
OpenNebula 5.2 Deployment guide
Release 5.2.1

OpenNebula Systems

Jan 09, 2017

This document is being provided by OpenNebula Systems under the Creative Commons Attribution-NonCommercial-
Share Alike License.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE DOCUMENT.

i

CONTENTS

1 Cloud Design 1
1.1 Overview . 1
1.2 Open Cloud Architecture . 1
1.3 VMware Cloud Architecture . 7
1.4 OpenNebula Provisioning Model . 13

2 OpenNebula Installation 19
2.1 Overview . 19
2.2 Front-end Installation . 19
2.3 MySQL Setup . 24

3 Node Installation 26
3.1 Overview . 26
3.2 KVM Node Installation . 27
3.3 vCenter Node Installation . 33
3.4 Verify your Installation . 37

4 Authentication Setup 45
4.1 Overview . 45
4.2 SSH Authentication . 46
4.3 x509 Authentication . 48
4.4 LDAP Authentication . 51

5 Sunstone Setup 56
5.1 Overview . 56
5.2 Sunstone Installation & Configuration . 57
5.3 Sunstone Views . 65
5.4 User Security and Authentication . 74
5.5 Cloud Servers Authentication . 79
5.6 Configuring Sunstone for Large Deployments . 82

6 VMware Infrastructure Setup 88
6.1 Overview . 88
6.2 vCenter Node . 88
6.3 vCenter Datastore . 94
6.4 vCenter Networking . 96

7 Open Cloud Host Setup 99
7.1 Overview . 99
7.2 KVM Driver . 99
7.3 Monitoring . 108

ii

7.4 PCI Passthrough . 111

8 Open Cloud Storage Setup 118
8.1 Overview . 118
8.2 Filesystem Datastore . 120
8.3 Ceph Datastore . 124
8.4 LVM Datastore . 128
8.5 Raw Device Mapping (RDM) Datastore . 130
8.6 iSCSI - Libvirt Datastore . 132
8.7 The Kernels & Files Datastore . 134

9 Open Cloud Networking Setup 136
9.1 Overview . 136
9.2 Node Setup . 137
9.3 Bridged Networking . 138
9.4 802.1Q VLAN Networks . 140
9.5 VXLAN Networks . 141
9.6 Open vSwitch Networks . 142

10 References 145
10.1 Overview . 145
10.2 ONED Configuration . 145
10.3 Logging & Debugging . 159
10.4 Onedb Tool . 162
10.5 Large Deployments . 165

iii

CHAPTER

ONE

CLOUD DESIGN

1.1 Overview

The first step of building a reliable, useful and successful cloud is to decide a clear design. This design needs to be
aligned with the expected use of the cloud, and it needs to describe which data center components are going to be
part of the cloud. This comprises i) all the infrastructure components such as networking, storage, authorization and
virtualization back-ends, as well as the ii) planned dimension of the cloud (characteristics of the workload, numbers
of users and so on) and the iii) provisioning workflow, ie, how end users are going to be isolated and using the cloud.

In order to get the most out of a OpenNebula Cloud, we recommend that you create a plan with the features, perfor-
mance, scalability, and high availability characteristics you want in your deployment. This Chapter provides informa-
tion to plan an OpenNebula cloud based on KVM or vCenter. With this information, you will be able to easily architect
and dimension your deployment, as well as understand the technologies involved in the management of virtualized
resources and their relationship.

1.1.1 How Should I Read This Chapter

This is the first Chapter to read, as it introduces the needed concepts to correctly define a cloud architecture.

Within this Chapter, as first step a design of the cloud and its dimension should be drafted. For KVM clouds proceed
to Open Cloud Architecture and for vCenter clouds read VMware Cloud Architecture.

Then you could read the OpenNebula Provisioning Model to identify the wanted model to provision resources to end
users. In a small installation with a few hosts, you can skip this provisioning model guide and use OpenNebula without
giving much thought to infrastructure partitioning and provisioning. But for medium and large deployments you will
probably want to provide some level of isolation and structure.

Once the cloud architecture has been designed the next step would be to learn how to install the OpenNebula front-end.

1.1.2 Hypervisor Compatibility

Section Compatibility
Open Cloud Architecture This Section applies to KVM.
VMware Cloud Architecture This Section applies to vCenter.
OpenNebula Provisioning Model This Section applies to both KVM and vCenter.

1.2 Open Cloud Architecture

Enterprise cloud computing is the next step in the evolution of data center (DC) virtualization. OpenNebula is a simple
but feature-rich and flexible solution to build and manage enterprise clouds and virtualized DCs, that combines existing

1

OpenNebula 5.2 Deployment guide, Release 5.2.1

virtualization technologies with advanced features for multi-tenancy, automatic provision and elasticity. OpenNebula
follows a bottom-up approach driven by sysadmins, devops and users real needs.

1.2.1 Architectural Overview

OpenNebula assumes that your physical infrastructure adopts a classical cluster-like architecture with a front-end, and
a set of hosts where Virtual Machines (VM) will be executed. There is at least one physical network joining all the
hosts with the front-end.

A cloud architecture is defined by three components: storage, networking and virtualization. Therefore, the basic
components of an OpenNebula system are:

• Front-end that executes the OpenNebula services.

• Hypervisor-enabled hosts that provide the resources needed by the VMs.

• Datastores that hold the base images of the VMs.

• Physical networks used to support basic services such as interconnection of the storage servers and OpenNebula
control operations, and VLANs for the VMs.

OpenNebula presents a highly modular architecture that offers broad support for commodity and enterprise-grade
hypervisor, monitoring, storage, networking and user management services. This Section briefly describes the different
choices that you can make for the management of the different subsystems. If your specific services are not supported
we recommend to check the drivers available in the Add-on Catalog. We also provide information and support about
how to develop new drivers.

1.2.2 Dimensioning the Cloud

The dimension of a cloud infrastructure can be directly inferred from the expected workload in terms of VMs that the
cloud infrastructure must sustain. This workload is also tricky to estimate, but this is a crucial exercise to build an
efficient cloud.

The main aspects to take into account at the time of dimensioning the OpenNebula cloud follows.

OpenNebula front-end

The minimum recommended specs are for the OpenNebula front-end are:

Resources Minimum Recommended configuration
Memory 2 GB
CPU 1 CPU (2 cores)
Disk Size 100 GB
Network 2 NICS

1.2. Open Cloud Architecture 2

http://opennebula.org/addons:catalog

OpenNebula 5.2 Deployment guide, Release 5.2.1

The maximum number of servers (virtualization hosts) that can be managed by a single OpenNebula instance strongly
depends on the performance and scalability of the underlying platform infrastructure, mainly the storage subsystem.
The general recommendation is that no more than 500 servers managed by a single instance, but there are users with
1,000 servers in each zone. Related to this, read the section about how to tune OpenNebula for large deployments.

KVM nodes

Regarding the dimensions of the KVM virtualization nodes:

• CPU: without overcommitment, each CPU core assigned to a VM must exists as a physical CPU core. By
example, for a workload of 40 VMs with 2 CPUs, the cloud will need 80 physical CPUs. These 80 physical
CPUs can be spread among different hosts: 10 servers with 8 cores each, or 5 server of 16 cores each. With
overcommitment, however, CPU dimension can be planned ahead, using the CPU and VCPU attributes: CPU
states physical CPUs assigned to the VM, while VCPU states virtual CPUs to be presented to the guest OS.

• MEMORY: Planning for memory is straightforward, as by default there is no overcommitment of memory in
OpenNebula. It is always a good practice to count 10% of overhead by the hypervisor (this is not an absolute
upper limit, it depends on the hypervisor). So, in order to sustain a VM workload of 45 VMs with 2GB of RAM
each, 90GB of physical memory is needed. The number of hosts is important, as each one will incur a 10%
overhead due to the hypervisors. For instance, 10 hypervisors with 10GB RAM each will contribute with 9GB
each (10% of 10GB = 1GB), so they will be able to sustain the estimated workload. The rule of thumb is having
at least 1GB per core, but this also depends on the expected workload.

Storage

It is important to understand how OpenNebula uses storage, mainly the difference between system and image datastore.

• The image datastore is where OpenNebula stores all the images registered that can be used to create VMs, so
the rule of thumb is to devote enough space for all the images that OpenNebula will have registered.

• The system datastore is where the VMs that are currently running store their disks. It is trickier to estimate
correctly since volatile disks come into play with no counterpart in the image datastore (volatile disks are created
on the fly in the hypervisor).

One valid approach is to limit the storage available to users by defining quotas in the number of maximum VMs and
also the Max Volatile Storage a user can demand, and ensuring enough system and image datastore space to comply
with the limit set in the quotas. In any case, OpenNebula allows cloud administrators to add more system and images
datastores if needed.

Dimensioning storage is a critical aspect, as it is usually the cloud bottleneck. It very much depends on the underlying
technology. As an example, in Ceph for a medium size cloud at least three servers are needed for storage with 5 disks
each of 1TB, 16Gb of RAM, 2 CPUs of 4 cores each and at least 2 NICs.

Network

Networking needs to be carefully designed to ensure reliability in the cloud infrastructure. The recommendation is
having 2 NICs in the front-end (public and service) (or 3 NICs depending on the storage backend, access to the storage
network may be needed) 4 NICs present in each virtualization node: private, public, service and storage networks.
Less NICs can be needed depending on the storage and networking configuration.

1.2.3 Front-End

The machine that holds the OpenNebula installation is called the front-end. This machine needs network connectivity
to all the hosts, and possibly access to the storage Datastores (either by direct mount or network). The base installation
of OpenNebula takes less than 150MB.

OpenNebula services include:

• Management daemon (oned) and scheduler (mm_sched)

• Web interface server (sunstone-server)

1.2. Open Cloud Architecture 3

OpenNebula 5.2 Deployment guide, Release 5.2.1

• Advanced components: OneFlow, OneGate, econe, ...

Note: Note that these components communicate through XML-RPC and may be installed in different machines for
security or performance reasons

There are several certified platforms to act as front-end for each version of OpenNebula. Refer to the platform notes
and chose the one that better fits your needs.

OpenNebula’s default database uses sqlite. If you are planning a production or medium to large scale deployment,
you should consider using MySQL.

If you are interested in setting up a high available cluster for OpenNebula, check the High Availability OpenNebula
Section.

If you need to federate several datacenters, with a different OpenNebula instance managing the resources but needing
a common authentication schema, check the Federation Section.

1.2.4 Monitoring

The monitoring subsystem gathers information relative to the hosts and the virtual machines, such as the host status,
basic performance indicators, as well as VM status and capacity consumption. This information is collected by ex-
ecuting a set of static probes provided by OpenNebula. The information is sent according to the following process:
each host periodically sends monitoring data to the front-end which collects it and processes it in a dedicated mod-
ule. This model is highly scalable and its limit (in terms of number of VMs monitored per second) is bounded to the
performance of the server running oned and the database server.

Please check the the Monitoring Section for more details.

1.2.5 Virtualization Hosts

The hosts are the physical machines that will run the VMs. There are several certified platforms to act as nodes for each
version of OpenNebula. Refer to the platform notes and chose the one that better fits your needs. The Virtualization
Subsystem is the component in charge of talking with the hypervisor installed in the hosts and taking the actions
needed for each step in the VM life-cycle.

OpenNebula natively supports one open source hypervisor, the KVM hypervisor, and OpenNebula is configured by
default to interact with hosts running KVM.

Ideally, the configuration of the nodes will be homogeneous in terms of the software components installed, the onead-
min administration user, accessible storage and network connectivity. This may not always be the case, and homoge-
neous hosts can be grouped in OpenNebula clusters

If you are interested in fail-over protection against hardware and operating system outages within your virtualized IT
environment, check the Virtual Machines High Availability Section.

1.2.6 Storage

OpenNebula uses Datastores to store VMs’ disk images. A datastore is any storage medium, typically backed by
SAN/NAS servers. In general, each datastore has to be accessible through the front-end using any suitable technology
NAS, SAN or direct attached storage.

1.2. Open Cloud Architecture 4

OpenNebula 5.2 Deployment guide, Release 5.2.1

When a VM is deployed, its images are transferred from the datastore to the hosts. Depending on the actual storage
technology used, it can mean a real transfer, a symbolic link or setting up an LVM volume.

OpenNebula is shipped with 3 different datastore classes:

• System Datastores: to hold images for running VMs. Depending on the storage technology used, these temporal
images can be complete copies of the original image, qcow deltas or simple filesystem links.

• Image Datastores: to store the disk images repository. Disk images are moved, or cloned to/from the System
Datastore when the VMs are deployed or shutdown, or when disks are attached or snapshotted.

• File Datastore: a special datastore used to store plain files, not disk images. These files can be used as kernels,
ramdisks or context files.

Image datastores can be of different types, depending on the underlying storage technology:

• Filesystem: to store disk images in a file form. There are three types: ssh, shared and qcow.

• LVM: to use LVM volumes instead of plain files to hold the Virtual Images. This reduces the overhead of having
a file-system in place and thus increases performance.

• Ceph: to store disk images using Ceph block devices.

Warning: Default: The default system and images datastores are configured to use a filesystem with the ssh
transfer drivers.

Please check the Storage Chapter for more details.

1.2. Open Cloud Architecture 5

OpenNebula 5.2 Deployment guide, Release 5.2.1

1.2.7 Networking

OpenNebula provides an easily adaptable and customizable network subsystem in order to integrate the specific net-
work requirements of existing datacenters. At least two different physical networks are needed:

• Service Network: used by the OpenNebula front-end daemons to access the hosts in order to manage and
monitor the hypervisors, and move image files. It is highly recommended to install a dedicated network for this
purpose;

• Instance Network: offers network connectivity to the VMs across the different hosts. To make an effective use
of your VM deployments, you will probably need to make one or more physical networks accessible to them.

The OpenNebula administrator may associate one of the following drivers to each Host:

• dummy (default): doesn’t perform any network operation, and firewalling rules are also ignored.

• fw: firewalling rules are applied, but networking isolation is ignored.

• 802.1Q: restrict network access through VLAN tagging, which requires support by the hardware switches.

• ebtables: restrict network access through Ebtables rules. No special hardware configuration required.

• ovswitch: restrict network access with Open vSwitch Virtual Switch.

• vxlan: segment a VLAN in isolated networks using the VXLAN encapsulation protocol.

Please check the Networking Chapter to find out more information about the networking technologies supported by
OpenNebula.

1.2.8 Authentication

The following authentication methods are supported to access OpenNebula:

• Built-in User/Password

• SSH Authentication

• X509 Authentication

• LDAP Authentication (and Active Directory)

Warning: Default: OpenNebula comes by default with an internal built-in user/password authentication.

Please check the Authentication Chapter to find out more information about the authentication technologies supported
by OpenNebula.

1.2.9 Advanced Components

Once you have an OpenNebula cloud up and running, you can install the following advanced components:

• Multi-VM Applications and Auto-scaling: OneFlow allows users and administrators to define, execute and
manage multi-tiered applications, or services composed of interconnected Virtual Machines with deployment
dependencies between them. Each group of Virtual Machines is deployed and managed as a single entity, and
is completely integrated with the advanced OpenNebula user and group management.

• Cloud Bursting: Cloud bursting is a model in which the local resources of a Private Cloud are combined with
resources from remote Cloud providers. Such support for cloud bursting enables highly scalable hosting envi-
ronments.

1.2. Open Cloud Architecture 6

http://openvswitch.org/

OpenNebula 5.2 Deployment guide, Release 5.2.1

• Public Cloud: Cloud interfaces can be added to your Private Cloud if you want to provide partners or external
users with access to your infrastructure, or to sell your overcapacity. The following interface provide a simple
and remote management of cloud (virtual) resources at a high abstraction level: Amazon EC2 and EBS APIs.

• Application Insight: OneGate allows Virtual Machine guests to push monitoring information to OpenNebula.
Users and administrators can use it to gather metrics, detect problems in their applications, and trigger OneFlow
auto-scaling rules.

1.3 VMware Cloud Architecture

OpenNebula is intended for companies willing to create a self-service cloud environment on top of their VMware in-
frastructure without having to abandon their investment in VMware and retool the entire stack. In these environments,
OpenNebula seamlessly integrates with existing vCenter infrastructures to leverage advanced features -such as vMo-
tion, HA or DRS scheduling- provided by the VMware vSphere product family. OpenNebula exposes a multi-tenant,
cloud-like provisioning layer on top of vCenter, including features like virtual data centers, data center federation or
hybrid cloud computing to connect in-house vCenter infrastructures with public clouds.

OpenNebula over vCenter is intended for companies that want to keep VMware management tools, procedures and
workflows. For these companies, throwing away VMware and retooling the entire stack is not the answer. However, as
they consider moving beyond virtualization toward a private cloud, they can choose to either invest more in VMware,
or proceed on a tactically challenging but strategically rewarding path of open.

1.3.1 Architectural Overview

OpenNebula assumes that your physical infrastructure adopts a classical cluster-like architecture with a front-end,
and a set of vCenter instances grouping ESX hosts where Virtual Machines (VM) will be executed. There is at least
one physical network joining all the vCenters and ESX hosts with the front-end. Connection from the front-end to
vCenter is for management purposes, whereas the connection from the front-end to the ESX hosts is to support the
VNC connections.

The VMware vCenter drivers enable OpenNebula to access one or more vCenter servers that manages one or more
ESX Clusters. Each ESX Cluster is presented in OpenNebula as an aggregated hypervisor. Note that OpenNebula
scheduling decisions are therefore made at ESX Cluster level, vCenter then uses the DRS component to select the
actual ESX host and Datastore to deploy the Virtual Machine.

1.3. VMware Cloud Architecture 7

OpenNebula 5.2 Deployment guide, Release 5.2.1

A cloud architecture is defined by three components: storage, networking and virtualization. Therefore, the basic
components of an OpenNebula cloud are:

• Front-end that executes the OpenNebula services.

• Hypervisor-enabled hosts that provide the resources needed by the VMs.

• Datastores that hold the base images of the VMs.

• Physical networks used to support basic services such as interconnection of the VMs.

OpenNebula presents a highly modular architecture that offers broad support for commodity and enterprise-grade
hypervisor, monitoring, storage, networking and user management services. This Section briefly describes the different
choices that you can make for the management of the different subsystems. If your specific services are not supported
we recommend to check the drivers available in the Add-on Catalog. We also provide information and support about
how to develop new drivers.

1.3.2 Dimensioning the Cloud

The dimension of a cloud infrastructure can be directly inferred from the expected workload in terms of VMs that the
cloud infrastructure must sustain. This workload is also tricky to estimate, but this is a crucial exercise to build an
efficient cloud.

OpenNebula front-end

The minimum recommended specs are for the OpenNebula front-end are:

1.3. VMware Cloud Architecture 8

http://opennebula.org/addons:catalog

OpenNebula 5.2 Deployment guide, Release 5.2.1

Resource Minimum Recommended configuration
Memory 2 GB
CPU 1 CPU (2 cores)
Disk Size 100 GB
Network 2 NICS

When running on a front-end with the minimums described in the above table, OpenNebula is able to manage a vCenter
infrastructure of the following characteristics:

• Up to 4 vCenters

• Up to 40 ESXs managed by each vCenter

• Up to 1.000 VMs in total, each vCenter managing up to 250 VMs

ESX nodes

Regarding the dimensions of the ESX virtualization nodes:

• CPU: without overcommitment, each CPU core assigned to a VM must exists as a physical CPU core. By
example, for a workload of 40 VMs with 2 CPUs, the cloud will need 80 physical CPUs. These 80 physical
CPUs can be spread among different hosts: 10 servers with 8 cores each, or 5 server of 16 cores each. With
overcommitment, however, CPU dimension can be planned ahead, using the CPU and VCPU attributes: CPU
states physical CPUs assigned to the VM, while VCPU states virtual CPUs to be presented to the guest OS.

• MEMORY: Planning for memory is straightforward, as by default there is no overcommitment of memory in
OpenNebula. It is always a good practice to count 10% of overhead by the hypervisor (this is not an absolute
upper limit, it depends on the hypervisor). So, in order to sustain a VM workload of 45 VMs with 2GB of RAM
each, 90GB of physical memory is needed. The number of hosts is important, as each one will incur a 10%
overhead due to the hypervisors. For instance, 10 hypervisors with 10GB RAM each will contribute with 9GB
each (10% of 10GB = 1GB), so they will be able to sustain the estimated workload. The rule of thumb is having
at least 1GB per core, but this also depends on the expected workload.

Storage

Dimensioning storage is a critical aspect, as it is usually the cloud bottleneck. OpenNebula can manage any datastore
that is mounted in the ESX and visible in vCenter. The datastore used by a VM can be fixed by the cloud admin
or delegated to the cloud user. It is important to ensure that enough space is available for new VMs, otherwise its
creation process will fail. One valid approach is to limit the storage available to users by defining quotas in the number
of maximum VMs, and ensuring enough datastore space to comply with the limit set in the quotas. In any case,
OpenNebula allows cloud administrators to add more datastores if needed.

Network

Networking needs to be carefully designed to ensure reliability in the cloud infrastructure. The recommendation is
having 2 NICs in the front-end (service and public network) 4 NICs present in each ESX node: private, public, service
and storage networks. Less NICs can be needed depending on the storage and networking configuration.

1.3.3 Front-End

The machine that holds the OpenNebula installation is called the front-end. This machine needs network connectivity
to all the vCenter and ESX hosts. The base installation of OpenNebula takes less than 150MB.

OpenNebula services include:

• Management daemon (oned) and scheduler (mm_sched)

• Web interface server (sunstone-server)

• Advanced components: OneFlow, OneGate, econe, ...

1.3. VMware Cloud Architecture 9

OpenNebula 5.2 Deployment guide, Release 5.2.1

Note: Note that these components communicate through XML-RPC and may be installed in different machines for
security or performance reasons

There are several certified platforms to act as front-end for each version of OpenNebula. Refer to the platform notes
and chose the one that better fits your needs.

OpenNebula’s default database uses sqlite. If you are planning a production or medium to large scale deployment,
you should consider using MySQL.

If you are interested in setting up a high available cluster for OpenNebula, check the High Availability OpenNebula
Section.

1.3.4 Monitoring

The monitoring subsystem gathers information relative to the hosts and the virtual machines, such as the host sta-
tus, basic performance indicators, as well as VM status and capacity consumption. This information is collected by
executing a set of probes in the front-end provided by OpenNebula.

Please check the the Monitoring Section for more details.

1.3.5 Virtualization Hosts

The VMware vCenter drivers enable OpenNebula to access one or more vCenter servers that manages one or more ESX
Clusters. Each ESX Cluster is presented in OpenNebula as an aggregated hypervisor. The Virtualization Subsystem
is the component in charge of talking with vCenter and taking the actions needed for each step in the VM life-cycle.
All the management operations are issued by the front-end to vCenter, except the VNC connection that is performed
directly from the front-end to the ESX where a particular VM is running.

OpenNebula natively supports vCenter hypervisor, vCenter drivers need to be configured in the OpenNebula front-end.

If you are interested in fail-over protection against hardware and operating system outages within your virtualized IT
environment, check the Virtual Machines High Availability Section.

1.3.6 Storage

OpenNebula interacts as a consumer of vCenter storage, and as such, supports all the storage devices supported by
ESX. When a VM is instantiated from a VM Template, the datastore associated with the VM template is chosen. If
DRS is enabled, then vCenter will pick the optimal Datastore to deploy the VM. Alternatively, the datastore used by a
VM can be fixed by the cloud admin or delegated to the cloud user.

vCenter/ESX Datastores can be represented in OpenNebula to create, clone and/or upload VMDKs. The vCenter/ESX
datastore representation in OpenNebula is described in the vCenter datastore Section.

1.3.7 Networking

Networking in OpenNebula is handled by creating or importing Virtual Network representations of vCenter Networks
and Distributed vSwitches. In this way, new VMs with defined network interfaces will be bound by OpenNebula to
these Networks and/or Distributed vSwitches. OpenNebula can create a new logical layer of these vCenter Networks
and Distributed vSwitches, in particular three types of Address Ranges can be defined per Virtual Network representing
the vCenter network resources: plain Ethernet, IPv4 and IPv6. This networking information can be passed to the VMs
through the contextualization process.

1.3. VMware Cloud Architecture 10

http://www.vmware.com/resources/compatibility/search.php?action=base&deviceCategory=san

OpenNebula 5.2 Deployment guide, Release 5.2.1

Please check the Networking Chapter to find out more information about the networking support in vCenter infras-
tructures by OpenNebula.

1.3.8 Authentication

The following authentication methods are supported to access OpenNebula:

• Built-in User/Password

• SSH Authentication

• X509 Authentication

• LDAP Authentication (and Active Directory)

Warning: Default: OpenNebula comes by default with an internal built-in user/password authentication.

Please check the Authentication Chapter to find out more information about the authentication technologies supported
by OpenNebula.

1.3.9 Multi-Datacenter Deployments

OpenNebula interacts with the vCenter instances by interfacing with its SOAP API exclusively. This characteristic
enables architectures where the OpenNebula instance and the vCenter environment are located in different datacenters.
A single OpenNebula instances can orchestrate several vCenter instances remotely located in different data centers.
Connectivity between data centers needs to have low latency in order to have a reliable management of vCenter from
OpenNebula.

1.3. VMware Cloud Architecture 11

OpenNebula 5.2 Deployment guide, Release 5.2.1

When administration domains need to be isolated or the interconnection between datacenters does not allow a single
controlling entity, OpenNebula can be configured in a federation. Each OpenNebula instance of the federation is called
a Zone, one of them configured as master and the others as slaves. An OpenNebula federation is a tightly coupled inte-
gration, all the instances will share the same user accounts, groups, and permissions configuration. Federation allows
end users to consume resources allocated by the federation administrators regardless of their geographic location. The
integration is seamless, meaning that a user logged into the Sunstone web interface of a Zone will not have to log out
and enter the address of another Zone. Sunstone allows to change the active Zone at any time, and it will automatically
redirect the requests to the right OpenNebula at the target Zone. For more information, check the Federation Section.

1.3. VMware Cloud Architecture 12

OpenNebula 5.2 Deployment guide, Release 5.2.1

1.3.10 Advanced Components

Once you have an OpenNebula cloud up and running, you can install the following advanced components:

• Multi-VM Applications and Auto-scaling: OneFlow allows users and administrators to define, execute and
manage services composed of interconnected Virtual Machines with deployment dependencies between them.
Each group of Virtual Machines is deployed and managed as a single entity, and is completely integrated with
the advanced OpenNebula user and group management.

• Cloud Bursting: Cloud bursting is a model in which the local resources of a Private Cloud are combined with
resources from remote Cloud providers. Such support for cloud bursting enables highly scalable hosting envi-
ronments.

• Public Cloud: Cloud interfaces can be added to your Private Cloud if you want to provide partners or external
users with access to your infrastructure, or to sell your overcapacity. The following interface provide a simple
and remote management of cloud (virtual) resources at a high abstraction level: Amazon EC2 and EBS APIs.

• Application Insight: OneGate allows Virtual Machine guests to push monitoring information to OpenNebula.
Users and administrators can use it to gather metrics, detect problems in their applications, and trigger OneFlow
auto-scaling rules.

1.4 OpenNebula Provisioning Model

In a small installation with a few hosts, you can use OpenNebula without giving much thought to infrastructure
partitioning and provisioning. But for medium and large deployments you will probably want to provide some level
of isolation and structure.

1.4. OpenNebula Provisioning Model 13

OpenNebula 5.2 Deployment guide, Release 5.2.1

This Section is meant for cloud architects, builders and administrators, to help them understand the OpenNebula model
for managing and provisioning virtual resources. This model is a result of our collaboration with our user community
throughout the life of the project.

1.4.1 The Infrastructure Perspective

Common large IT shops have multiple Data Centers (DCs), each one running its own OpenNebula instance and
consisting of several physical Clusters of infrastructure resources (Hosts, Networks and Datastores). These Clusters
could present different architectures and software/hardware execution environments to fulfill the needs of different
workload profiles. Moreover, many organizations have access to external public clouds to build hybrid cloud scenarios
where the private capacity of the Data Centers is supplemented with resources from external clouds, like Amazon
AWS, to address peaks of demand.

For example, you could have two Data Centers in different geographic locations, Europe and USA West Coast, and an
agreement for cloudbursting with a public cloud provider, such as Amazon, and/or Azure. Each Data Center runs its
own zone or full OpenNebula deployment. Multiple OpenNebula Zones can be configured as a federation, and in this
case they will share the same user accounts, groups, and permissions across Data Centers.

1.4.2 The Organizational Perspective

Users are organized into Groups (similar to what other environments call Projects, Domains, Tenants...). A Group
is an authorization boundary that can be seen as a business unit if you are considering it as a private cloud or as
a complete new company if it is a public cloud. While Clusters are used to group Physical Resources according to
common characteristics such as networking topology or physical location, Virtual Data Centers (VDCs) allow to create
“logical” pools of Physical Resources (which could belong to different Clusters and Zones) and allocate them to user
Groups.

A VDC is a fully-isolated virtual infrastructure environment where a Group of users (or optionally several Groups of
users), under the control of a Group admin, can create and manage compute and storage capacity. The users in the
Group, including the Group admin, would only see the virtual resources and not the underlying physical infrastruc-
ture. The Physical Resources allocated to the Group are managed by the cloud administrator through a VDC. These
resources grouped in the VDC can be dedicated exclusively to the Group, providing isolation at the physical level too.

The privileges of the Group users and the admin regarding the operations over the virtual resources created by other
users can be configured. For example, in the Advanced Cloud Provisioning Case described below, the users can
instantiate virtual machine templates to create their machines, while the admins of the Group have full control over
other users’ resources and can also create new users in the Group.

Users can access their resources through any of the existing OpenNebula interfaces, such as the CLI, Sunstone Cloud
View, OCA, or the AWS APIs. Group admins can manage their Groups through the CLI or the Group Admin View in
Sunstone. Cloud administrators can manage the Groups through the CLI or Sunstone.

1.4. OpenNebula Provisioning Model 14

OpenNebula 5.2 Deployment guide, Release 5.2.1

The Cloud provisioning model based on VDCs enables an integrated, comprehensive framework to dynamically pro-
vision the infrastructure resources in large multi-datacenter environments to different customers, business units or
groups. This brings several benefits:

• Partitioning of cloud Physical Resources between Groups of users

• Complete isolation of Users, organizations or workloads

• Allocation of Clusters with different levels of security, performance or high availability

• Containers for the execution of software-defined data centers

• Way of hiding Physical Resources from Group members

• Simple federation, scalability and cloudbursting of private cloud infrastructures beyond a single cloud instance
and data center

1.4.3 Examples of Provisioning Use Cases

The following are common enterprise use cases in large cloud computing deployments:

• On-premise Private Clouds Serving Multiple Projects, Departments, Units or Organizations. On-premise
private clouds in large organizations require powerful and flexible mechanisms to manage the access privileges
to the virtual and physical infrastructure and to dynamically allocate the available resources. In these scenarios,
the Cloud Administrator would define a VDC for each Department, dynamically allocating resources according
to their needs, and delegating the internal administration of the Group to the Department IT Administrator.

• Cloud Providers Offering Virtual Private Cloud Computing. Cloud providers providing customers with a fully-
configurable and isolated environment where they have full control and capacity to administer its users and
resources. This combines a public cloud with the control usually seen in a personal private cloud system.

For example, you can think Web Development, Human Resources, and Big Data Analysis as business units represented
by Groups in a private OpenNebula cloud, and allocate them resources from your DCs and public clouds in order to
create three different VDCs.

• VDC BLUE: VDC that allocates (ClusterA-DC_West_Coast + Cloudbursting) to Web Development

• VDC RED: VDC that allocates (ClusterB-DC_West_Coast + ClusterA-DC_Europe + Cloudbursting) to Human
Resources

• VDC GREEN: VDC that allocates (ClusterC-DC_West_Coast + ClusterB-DC_Europe) to Big Data Analysis

1.4. OpenNebula Provisioning Model 15

OpenNebula 5.2 Deployment guide, Release 5.2.1

1.4.4 Cloud Provisioning Scenarios

OpenNebula has three predefined User roles to implement three typical enterprise cloud scenarios:

• Data center infrastructure management

• Simple cloud provisioning model

• Advanced cloud provisioning model

In these three scenarios, Cloud Administrators manage the physical infrastructure, creates Users and VDCs, prepares
base templates and images for Users, etc

Cloud Administrators typically access the cloud using the CLI or the Admin View of Sunstone.

1.4. OpenNebula Provisioning Model 16

OpenNebula 5.2 Deployment guide, Release 5.2.1

Role Capabilities
Cloud Admin.

• Operates the Cloud infrastructure (i.e. computing
nodes, networking fabric, storage servers)

• Creates and manages OpenNebula infrastructure
resources: Hosts, Virtual Networks, Datastores

• Creates and manages Multi-VM Applications
(Services)

• Creates new Groups and VDCs
• Assigns Groups and physical resources to a VDC

and sets quota limits
• Defines base instance types to be used by the

users. These types define the capacity of the VMs
(memory, cpu and additional storage) and connec-
tivity.

• Prepare VM images to be used by the users
• Monitor the status and health of the cloud
• Generate activity reports

Data Center Infrastructure Management

This model is used to manage data center virtualization and to integrate and federate existing IT assets that can be in
different data centers. In this usage model, Users are familiar with virtualization concepts. Except for the infrastructure
resources, the web interface offers the same operations available to the Cloud Admin. These are “Advanced Users”
that could be considered also as “Limited Cloud Administrators”.

Users can use the templates and images pre-defined by the cloud administrator, but usually are also allowed to create
their own templates and images. They are also able to manage the life-cycle of their resources, including advanced
features that may harm the VM guests, like hot-plugging of new disks, resize of Virtual Machines, modify boot
parameters, etc.

Groups are used by the Cloud Administrator to isolate users, which are combined with VDCs to have allocated re-
sources, but are not offered on-demand.

These “Advanced Users” typically access the cloud by using the CLI or the User View of Sunstone. This is not the
default model configured for the group Users.

Role Capabilities
Advanced User

• Instantiates VMs using their own templates
• Creates new templates and images
• Manages their VMs, including advanced life-

cycle features
• Creates and manages Multi-VM Application

(Services)
• Check their usage and quotas
• Upload SSH keys to access the VMs

Simple Cloud Provisioning

In the simple infrastructure provisioning model, the Cloud offers infrastructure as a service to individual Users. Users
are considered as “Cloud Users” or “Cloud Consumers”, being much more limited in their operations. These Users
access a very intuitive simplified web interface that allows them to launch Virtual Machines from predefined Templates.

1.4. OpenNebula Provisioning Model 17

OpenNebula 5.2 Deployment guide, Release 5.2.1

They can access their VMs, and perform basic operations like shutdown. The changes made to a VM disk can be saved
back, but new Images cannot be created from scratch.

Groups are used by the Cloud Administrator to isolate users, which are combined with VDCs to have allocated re-
sources, but are not offered on-demand.

These “Cloud Users” typically access the cloud by using the Cloud View of Sunstone. This is the default model
configured for the group Users.

Role Capabilities
Cloud User

• Instantiates VMs using the templates defined by
the Cloud Admins and the images defined by the
Cloud Admins or Group Admins.

• Instantiates VMs using their own Images saved
from a previous running VM

• Manages their VMs, including
– reboot
– power off/on (short-term switching-off)
– delete
– save a VM into a new Template
– obtain basic monitor information and status

(including IP addresses)
• Delete any previous VM template and disk snap-

shot
• Check user account usage and quotas
• Upload SSH keys to access the VMs

Advanced Cloud Provisioning

The advanced provisioning model is an extension of the previous one where the cloud provider offers VDCs on demand
to Groups of Users (projects, companies, departments or business units). Each Group can define one or more users as
Group Admins. These admins can create new users inside the Group, and also manage the resources of the rest of the
users. A Group Admin may, for example, shutdown a VM from other user to free group quota usage.

These Group Admins typically access the cloud by using the Group Admin View of Sunstone.

The Group Users have the capabilities described in the previous scenario and typically access the cloud by using the
Cloud View of Sunstone.

Role Capabilities
Group Admin.

• Creates new users in the Group
• Operates on the Group’s virtual machines and

disk images
• Share Saved Templates with the members of the

Group
• Checks Group usage and quotas

1.4. OpenNebula Provisioning Model 18

CHAPTER

TWO

OPENNEBULA INSTALLATION

2.1 Overview

The Front-end is the central part of an OpenNebula installation. This is the machine where the server software is
installed and where you connect to manage your cloud. It can be a physical node or a Virtual Machine.

2.1.1 How Should I Read This Chapter

Before reading this chapter make sure you have read and understood the Cloud Design chapter.

The aim of this chapter is to give you a quick-start guide to deploy OpenNebula. This is the simplest possible instal-
lation, but it is also the foundation for a more complex setup, with Advanced Components (like Host and VM High
Availability, Cloud Bursting, etc...).

First you should read the Front-end Installation section. Note that by default it uses a SQLite database that is not
recommended for production so, if this is not a small proof of concept, while following the Installation section, you
should enable MySQL.

After reading this chapter, read the Node Installation chapter next in order to add hypervisors to your cloud.

2.1.2 Hypervisor Compatibility

Section Compatibility
Front-end Installation This Section applies to both KVM and vCenter.
MySQL Setup This Section applies to both KVM and vCenter.
Scheduler This Section applies to both KVM and vCenter.

2.2 Front-end Installation

This page shows you how to install OpenNebula from the binary packages.

Using the packages provided in our site is the recommended method, to ensure the installation of the latest version
and to avoid possible packages divergences of different distributions. There are two alternatives here: you can add
our package repositories to your system, or visit the software menu to download the latest package for your Linux
distribution.

If there are no packages for your distribution, head to the Building from Source Code guide.

19

http://opennebula.org/software:software

OpenNebula 5.2 Deployment guide, Release 5.2.1

2.2.1 Step 1. Disable SElinux in CentOS/RHEL 7

SElinux can cause some problems, like not trusting oneadmin user’s SSH credentials. You can disable it changing
in the file /etc/selinux/config this line:

SELINUX=disabled

After this file is changed reboot the machine.

2.2.2 Step 2. Add OpenNebula Repositories

CentOS/RHEL 7

To add OpenNebula repository execute the following as root:

cat << EOT > /etc/yum.repos.d/opennebula.repo
[opennebula]
name=opennebula
baseurl=http://downloads.opennebula.org/repo/5.2/CentOS/7/x86_64
enabled=1
gpgcheck=0
EOT

Debian/Ubuntu

To add OpenNebula repository on Debian/Ubuntu execute as root:

wget -q -O- http://downloads.opennebula.org/repo/Debian/repo.key | apt-key add -

Debian 8

echo "deb http://downloads.opennebula.org/repo/5.2/Debian/8 stable opennebula" > /etc/apt/sources.list.d/opennebula.list

Ubuntu 14.04

echo "deb http://downloads.opennebula.org/repo/5.2/Ubuntu/14.04 stable opennebula" > /etc/apt/sources.list.d/opennebula.list

Ubuntu 16.04

echo "deb http://downloads.opennebula.org/repo/5.2/Ubuntu/16.04 stable opennebula" > /etc/apt/sources.list.d/opennebula.list

2.2.3 Step 3. Installing the Software

Installing on CentOS/RHEL 7

Before installing:

• Activate the EPEL repo. In CentOS this can be done with the following command:

yum install epel-release

There are packages for the Front-end, distributed in the various components that conform OpenNebula, and packages
for the virtualization host.

To install a CentOS/RHEL OpenNebula Front-end with packages from our repository, execute the following as root.

yum install opennebula-server opennebula-sunstone opennebula-ruby opennebula-gate
→˓opennebula-flow

2.2. Front-end Installation 20

http://fedoraproject.org/wiki/EPEL#How_can_I_use_these_extra_packages.3F

OpenNebula 5.2 Deployment guide, Release 5.2.1

CentOS/RHEL Package Description

These are the packages available for this distribution:

• opennebula: Command Line Interface.

• opennebula-server: Main OpenNebula daemon, scheduler, etc.

• opennebula-sunstone: Sunstone (the GUI) and the EC2 API.

• opennebula-ruby: Ruby Bindings.

• opennebula-java: Java Bindings.

• opennebula-gate: OneGate server that enables communication between VMs and OpenNebula.

• opennebula-flow: OneFlow manages services and elasticity.

• opennebula-node-kvm: Meta-package that installs the oneadmin user, libvirt and kvm.

• opennebula-common: Common files for OpenNebula packages.

Note: The files located in /etc/one and /var/lib/one/remotes are marked as configuration files.

Installing on Debian/Ubuntu

To install OpenNebula on a Debian/Ubuntu Front-end using packages from our repositories execute as root:

apt-get update
apt-get install opennebula opennebula-sunstone opennebula-gate opennebula-flow

Debian/Ubuntu Package Description

These are the packages available for these distributions:

• opennebula-common: Provides the user and common files.

• ruby-opennebula: Ruby API.

• libopennebula-java: Java API.

• libopennebula-java-doc: Java API Documentation.

• opennebula-node: Prepares a node as an opennebula-node.

• opennebula-sunstone: Sunstone (the GUI).

• opennebula-tools: Command Line interface.

• opennebula-gate: OneGate server that enables communication between VMs and OpenNebula.

2.2. Front-end Installation 21

OpenNebula 5.2 Deployment guide, Release 5.2.1

• opennebula-flow: OneFlow manages services and elasticity.

• opennebula: OpenNebula Daemon.

Note: Besides /etc/one, the following files are marked as configuration files:

• /var/lib/one/remotes/datastore/ceph/ceph.conf

• /var/lib/one/remotes/vnm/OpenNebulaNetwork.conf

2.2.4 Step 4. Ruby Runtime Installation

Some OpenNebula components need Ruby libraries. OpenNebula provides a script that installs the required gems as
well as some development libraries packages needed.

As root execute:

/usr/share/one/install_gems

The previous script is prepared to detect common Linux distributions and install the required libraries. If it fails to find
the packages needed in your system, manually install these packages:

• sqlite3 development library

• mysql client development library

• curl development library

• libxml2 and libxslt development libraries

• ruby development library

• gcc and g++

• make

If you want to install only a set of gems for an specific component read Building from Source Code where it is
explained in more depth.

2.2.5 Step 5. Enabling MySQL/MariaDB (Optional)

You can skip this step if you just want to deploy OpenNebula as quickly as possible. However if you are deploying
this for production or in a more serious environment, make sure you read the MySQL Setup section.

Note that it is possible to switch from SQLite to MySQL, but since it’s more cumbersome to migrate databases, we
suggest that if in doubt, use MySQL from the start.

2.2.6 Step 6. Starting OpenNebula

Log in as the oneadmin user follow these steps:

The /var/lib/one/.one/one_auth fill will have been created with a randomly-generated password. It should
contain the following: oneadmin:<password>. Feel free to change the password before starting OpenNebula.
For example:

$ echo "oneadmin:mypassword" > ~/.one/one_auth

2.2. Front-end Installation 22

OpenNebula 5.2 Deployment guide, Release 5.2.1

Warning: This will set the oneadmin password on the first boot. From that point, you must use the oneuser
passwd command to change oneadmin’s password.

You are ready to start the OpenNebula daemons. You can use systemctl for Linux distributions which have adopted
systemd:

systemctl start opennebula
systemctl start opennebula-sunstone

Or use service in older Linux systems:

service opennebula start
service opennebula-sunstone start

2.2.7 Step 7. Verifying the Installation

After OpenNebula is started for the first time, you should check that the commands can connect to the OpenNebula
daemon. You can do this in the Linux CLI or in the graphical user interface: Sunstone.

Linux CLI

In the Front-end, run the following command as oneadmin:

$ oneuser show
USER 0 INFORMATION
ID : 0
NAME : oneadmin
GROUP : oneadmin
PASSWORD : 3bc15c8aae3e4124dd409035f32ea2fd6835efc9
AUTH_DRIVER : core
ENABLED : Yes

USER TEMPLATE
TOKEN_PASSWORD="ec21d27e2fe4f9ed08a396cbd47b08b8e0a4ca3c"

RESOURCE USAGE & QUOTAS

If you get an error message, then the OpenNebula daemon could not be started properly:

$ oneuser show
Failed to open TCP connection to localhost:2633 (Connection refused - connect(2) for
→˓"localhost" port 2633)

The OpenNebula logs are located in /var/log/one, you should have at least the files oned.log and sched.
log, the core and scheduler logs. Check oned.log for any error messages, marked with [E].

Sunstone

Now you can try to log in into Sunstone web interface. To do this point your browser to http://
<fontend_address>:9869. If everything is OK you will be greeted with a login page. The user is oneadmin
and the password is the one in the file /var/lib/one/.one/one_auth in your Front-end.

2.2. Front-end Installation 23

OpenNebula 5.2 Deployment guide, Release 5.2.1

If the page does not load, make sure you check /var/log/one/sunstone.log and /var/log/one/
sunstone.error. Also, make sure TCP port 9869 is allowed through the firewall.

Directory Structure

The following table lists some notable paths that are available in your Front-end after the installation:

Path Description
/etc/one/ Configuration Files
/var/log/one/ Log files, notably: oned.log, sched.log, sunstone.log and

<vmid>.log
/var/lib/one/ oneadmin home directory
/var/lib/one/datastores/
<dsid>/

Storage for the datastores

/var/lib/one/vms/<vmid>/ Action files for VMs (deployment file, transfer manager scripts, etc...)
/var/lib/one/.one/one_auth oneadmin credentials
/var/lib/one/remotes/ Probes and scripts that will be synced to the Hosts
/var/lib/one/remotes/
hooks/

Hook scripts

/var/lib/one/remotes/vmm/ Virtual Machine Manager Driver scripts
/var/lib/one/remotes/auth/ Authentication Driver scripts
/var/lib/one/remotes/im/ Information Manager (monitoring) Driver scripts
/var/lib/one/remotes/
market/

MarketPlace Driver scripts

/var/lib/one/remotes/
datastore/

Datastore Driver scripts

/var/lib/one/remotes/vnm/ Networking Driver scripts
/var/lib/one/remotes/tm/ Transfer Manager Driver scripts

2.2.8 Step 8. Next steps

Now that you have successfully started your OpenNebula service, head over to the Node Installation chapter in order
to add hypervisors to your cloud.

2.3 MySQL Setup

The MySQL/MariaDB back-end is an alternative to the default SQLite back-end. In this guide and in the rest of Open-
Nebula’s documentation and configuration files we will refer to this database as the MySQL, however OpenNebula
you can use either MySQL or MariaDB.

The two back-ends cannot coexist (SQLite and MySQL), and you will have to decide which one is going to be used
while planning your OpenNebula installation.

Note: If you are planning to install OpenNebula with MySQL back-end, please follow this guide prior to start
OpenNebula the first time to avoid problems with oneadmin and serveradmin credentials.

2.3. MySQL Setup 24

OpenNebula 5.2 Deployment guide, Release 5.2.1

2.3.1 Installation

First of all, you need a working MySQL server. You can either deploy one for the OpenNebula installation or reuse
any existing MySQL already deployed and accessible by the Front-end.

Configuring MySQL

You need to add a new user and grant it privileges on the opennebula database. This new database doesn’t need to
exist, OpenNebula will create it the first time you run it.

Assuming you are going to use the default values, log in to your MySQL server and issue the following commands:

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. [...]

mysql> GRANT ALL PRIVILEGES ON opennebula.* TO 'oneadmin' IDENTIFIED BY '<thepassword>
→˓';
Query OK, 0 rows affected (0.00 sec)

Visit the MySQL documentation to learn how to manage accounts.

Now configure the transaction isolation level:

mysql> SET GLOBAL TRANSACTION ISOLATION LEVEL READ COMMITTED;

Configuring OpenNebula

Before you run OpenNebula for the first time, you need to set in oned.conf the connection details, and the database
you have granted privileges on.

Sample configuration for MySQL
DB = [backend = "mysql",

server = "localhost",
port = 0,
user = "oneadmin",
passwd = "<thepassword>",
db_name = "opennebula"]

Fields:

• server: URL of the machine running the MySQL server.

• port: port for the connection to the server. If set to 0, the default port is used.

• user: MySQL user-name.

• passwd: MySQL password.

• db_name: Name of the MySQL database OpenNebula will use.

2.3.2 Using OpenNebula with MySQL

After this installation and configuration process you can use OpenNebula as usual.

2.3. MySQL Setup 25

http://dev.mysql.com/doc/refman/5.7/en/user-account-management.html

CHAPTER

THREE

NODE INSTALLATION

3.1 Overview

After OpenNebula Front-end is correctly setup the next step is preparing the hosts where the VMs are going to run.

3.1.1 How Should I Read This Chapter

Make sure you have properly installed the Front-end before reading this chapter.

This chapter focuses on the minimal node installation you need to follow in order to finish deploying OpenNebula.
Concepts like storage and network have been simplified. Therefore feel free to follow the other specific chapters in
order to configure other subsystems like networking and storage.

Note that you can follow this chapter without reading any other guides and you will be ready, by the end of it, to
deploy a Virtual Machine. If in the future you want to switch to other storage or networking technologies you will be
able to do so.

After installing the nodes and verifying your installation, you can either start using your cloud or configure more
components:

• Authenticaton. (Optional) For integrating OpenNebula with LDAP/AD, or securing it further with other authen-
tication technologies.

• Sunstone. OpenNebula GUI should working and accessible at this stage, but by reading this guide you will learn
about specific enhanced configurations for Sunstone.

If your cloud is KVM based you should also follow:

• Open Cloud Host Setup.

• Open Cloud Storage Setup.

• Open Cloud Networking Setup.

Otherwise, if it’s VMware based:

• Head over to the VMware Infrastructure Setup chapter.

3.1.2 Hypervisor Compatibility

Section Compatibility
KVM Node Installation This Section applies to KVM.
vCenter Node Installation This Section applies to vCenter.
Verify your Installation This Section applies to both vCenter and KVM.

26

OpenNebula 5.2 Deployment guide, Release 5.2.1

3.2 KVM Node Installation

This page shows you how to install OpenNebula from the binary packages.

Using the packages provided in our site is the recommended method, to ensure the installation of the latest version
and to avoid possible packages divergences of different distributions. There are two alternatives here: you can add
our package repositories to your system, or visit the software menu to download the latest package for your Linux
distribution.

3.2.1 Step 1. Add OpenNebula Repositories

CentOS/RHEL 7

To add OpenNebula repository execute the following as root:

cat << EOT > /etc/yum.repos.d/opennebula.repo
[opennebula]
name=opennebula
baseurl=http://downloads.opennebula.org/repo/5.2/CentOS/7/x86_64
enabled=1
gpgcheck=0
EOT

Debian/Ubuntu

To add OpenNebula repository on Debian/Ubuntu execute as root:

wget -q -O- http://downloads.opennebula.org/repo/Debian/repo.key | apt-key add -

Debian 8

echo "deb http://downloads.opennebula.org/repo/5.2/Debian/8 stable opennebula" > /etc/apt/sources.list.d/opennebula.list

Ubuntu 14.04

echo "deb http://downloads.opennebula.org/repo/5.2/Ubuntu/14.04 stable opennebula" > /etc/apt/sources.list.d/opennebula.list

Ubuntu 16.04

echo "deb http://downloads.opennebula.org/repo/5.2/Ubuntu/16.04 stable opennebula" > /etc/apt/sources.list.d/opennebula.list

3.2.2 Step 2. Installing the Software

Installing on CentOS/RHEL

Execute the following commands to install the node package and restart libvirt to use the OpenNebula provided
configuration file:

$ sudo yum install opennebula-node-kvm
$ sudo service libvirtd restart

For further configuration, check the specific guide: KVM.

3.2. KVM Node Installation 27

http://opennebula.org/software:software

OpenNebula 5.2 Deployment guide, Release 5.2.1

Installing on Debian/Ubuntu

Execute the following commands to install the node package and restart libvirt to use the OpenNebula provided
configuration file:

$ sudo apt-get install opennebula-node
$ sudo service libvirtd restart # debian
$ sudo service libvirt-bin restart # ubuntu

For further configuration check the specific guide: KVM.

3.2.3 Step 3. Disable SElinux in CentOS/RHEL 7

SElinux can cause some problems, like not trusting oneadmin user’s SSH credentials. You can disable it changing
in the file /etc/selinux/config this line:

SELINUX=disabled

After this file is changed reboot the machine.

3.2.4 Step 4. Configure Passwordless SSH

OpenNebula Front-end connects to the hypervisor Hosts using SSH. You must distribute the public key of oneadmin
user from all machines to the file /var/lib/one/.ssh/authorized_keys in all the machines. There are
many methods to achieve the distribution of the SSH keys, ultimately the administrator should choose a method (the
recommendation is to use a configuration management system). In this guide we are going to manually scp the SSH
keys.

When the package was installed in the Front-end, an SSH key was generated and the authorized_keys populated.
We will sync the id_rsa, id_rsa.pub and authorized_keys from the Front-end to the nodes. Additionally
we need to create a known_hosts file and sync it as well to the nodes. To create the known_hosts file, we have
to execute this command as user oneadmin in the Front-end with all the node names and the Front-end name as
parameters:

$ ssh-keyscan <frontend> <node1> <node2> <node3> ... >> /var/lib/one/.ssh/known_hosts

Now we need to copy the directory /var/lib/one/.ssh to all the nodes. The easiest way is to set a temporary
password to oneadmin in all the hosts and copy the directory from the Front-end:

$ scp -rp /var/lib/one/.ssh <node1>:/var/lib/one/
$ scp -rp /var/lib/one/.ssh <node2>:/var/lib/one/
$ scp -rp /var/lib/one/.ssh <node3>:/var/lib/one/
$...

You should verify that connecting from the Front-end, as user oneadmin, to the nodes and the Front-end itself, and
from the nodes to the Front-end, does not ask password:

$ ssh <frontend>
$ exit

$ ssh <node1>
$ ssh <frontend>
$ exit
$ exit

3.2. KVM Node Installation 28

OpenNebula 5.2 Deployment guide, Release 5.2.1

$ ssh <node2>
$ ssh <frontend>
$ exit
$ exit

$ ssh <node3>
$ ssh <frontend>
$ exit
$ exit

3.2.5 Step 5. Networking Configuration

A network connection is needed by the OpenNebula Front-end daemons to access the hosts to manage and monitor
the Hosts, and to transfer the Image files. It is highly recommended to use a dedicated network for this purpose.

There are various network models (please check the Networking chapter to find out the networking technologies
supported by OpenNebula).

3.2. KVM Node Installation 29

OpenNebula 5.2 Deployment guide, Release 5.2.1

You may want to use the simplest network model that corresponds to the bridged drivers. For this driver, you will
need to setup a linux bridge and include a physical device to the bridge. Later on, when defining the network in
OpenNebula, you will specify the name of this bridge and OpenNebula will know that it should connect the VM to this
bridge, thus giving it connectivity with the physical network device connected to the bridge. For example, a typical
host with two physical networks, one for public IP addresses (attached to an eth0 NIC for example) and the other for
private virtual LANs (NIC eth1 for example) should have two bridges:

$ brctl show
bridge name bridge id STP enabled interfaces
br0 8000.001e682f02ac no eth0
br1 8000.001e682f02ad no eth1

Note: Remember that this is only required in the Hosts, not in the Front-end. Also remember that it is not important
the exact name of the resources (br0, br1, etc...), however it’s important that the bridges and NICs have the same
name in all the Hosts.

3.2.6 Step 6. Storage Configuration

You can skip this step entirely if you just want to try out OpenNebula, as it will come configured by default in such a
way that it uses the local storage of the Front-end to store Images, and the local storage of the hypervisors as storage
for the running VMs.

However, if you want to set-up another storage configuration at this stage, like Ceph, NFS, LVM, etc, you should read
the Open Cloud Storage chapter.

3.2.7 Step 8. Adding a Host to OpenNebula

In this step we will register the node we have installed in the OpenNebula Front-end, so OpenNebula can launch VMs
in it. This step can be done in the CLI or in Sunstone, the graphical user interface. Follow just one method, not both,
as they accomplish the same.

To learn more about the host subsystem, read this guide.

Adding a Host through Sunstone

Open the Sunstone as documented here. In the left side menu go to Infrastructure -> Hosts. Click on the + button.

3.2. KVM Node Installation 30

OpenNebula 5.2 Deployment guide, Release 5.2.1

The fill-in the fqdn of the node in the Hostname field.

Finally, return to the Hosts list, and check that the Host switch to ON status. It should take somewhere between 20s to
1m. Try clicking on the refresh button to check the status more frequently.

3.2. KVM Node Installation 31

OpenNebula 5.2 Deployment guide, Release 5.2.1

If the host turns to err state instead of on, check the /var/log/one/oned.log. Chances are it’s a problem with
the SSH!

Adding a Host through the CLI

To add a node to the cloud, run this command as oneadmin in the Front-end:

$ onehost create <node01> -i kvm -v kvm

$ onehost list
ID NAME CLUSTER RVM ALLOCATED_CPU ALLOCATED_MEM STAT
1 localhost default 0 - - init

After some time (20s - 1m)

$ onehost list
ID NAME CLUSTER RVM ALLOCATED_CPU ALLOCATED_MEM STAT
0 node01 default 0 0 / 400 (0%) 0K / 7.7G (0%) on

If the host turns to err state instead of on, check the /var/log/one/oned.log. Chances are it’s a problem with
the SSH!

3.2.8 Step 8. Import Currently Running VMs (Optional)

You can skip this step as importing VMs can be done at any moment, however, if you wish to see your previously
deployed VMs in OpenNebula you can use the import VM functionality.

3.2.9 Step 9. Next steps

You can now jump to the optional Verify your Installation section in order to get to launch a test VM.

3.2. KVM Node Installation 32

OpenNebula 5.2 Deployment guide, Release 5.2.1

Otherwise, you are ready to start using your cloud or you could configure more components:

• Authenticaton. (Optional) For integrating OpenNebula with LDAP/AD, or securing it further with other authen-
tication technologies.

• Sunstone. OpenNebula GUI should be working and accessible at this stage, but by reading this guide you will
learn about specific enhanced configurations for Sunstone.

If your cloud is KVM based you should also follow:

• Open Cloud Host Setup.

• Open Cloud Storage Setup.

• Open Cloud Networking Setup.

If it’s VMware based:

• Head over to the VMware Infrastructure Setup chapter.

3.3 vCenter Node Installation

This Section lays out the requirements configuration needed in the vCenter and ESX instances in order to be managed
by OpenNebula.

The VMware vCenter drivers enable OpenNebula to access one or more vCenter servers that manages one or more
ESX Clusters. Each ESX Cluster is presented in OpenNebula as an aggregated hypervisor, i.e. as an OpenNebula
Host. This means that the representation is one OpenNebula Host per ESX Cluster.

Note that OpenNebula scheduling decisions are therefore made at ESX Cluster level, vCenter then uses the DRS
component to select the actual ESX host and Datastore to deploy the Virtual Machine, although the datastore can be
explicitly selected from OpenNebula.

3.3.1 Requirements

The following must be met for a functional vCenter environment:

• vCenter 5.5 and/or 6.0, with at least one cluster aggregating at least one ESX 5.5 and/or 6.0 host.

• VMware tools are needed in the guestOS to enable several features (contextualization and networking feedback).
Please install VMware Tools (for Windows) or Open Virtual Machine Tools (for *nix) in the guestOS.

• Define a vCenter user for OpenNebula. This vCenter user (let’s call her oneadmin) needs to have access to the
ESX clusters that OpenNebula will manage. In order to avoid problems, the hassle free approach is to declare
this oneadmin user as Administrator.

• Alternatively, in some enterprise environments declaring the user as Administrator is not allowed, in that case,
you will need to grant these permissions (please note that the following permissions related to operations are
related to the use that OpenNebula does with this operations):

3.3. vCenter Node Installation 33

https://www.vmware.com/support/ws55/doc/new_guest_tools_ws.html
http://open-vm-tools.sourceforge.net/

OpenNebula 5.2 Deployment guide, Release 5.2.1

vCenter
Opera-
tion

Privileges Notes

CloneVM_TaskVirtualMachine.Provisioning.DeployTemplate Creates a clone of
a particular VM

Recon-
figVM_Task

VirtualMachine.Interact.DeviceConnection
VirtualMachine.Interact.SetCDMedia VirtualMachine.Interact.SetFloppyMedia
VirtualMachine.Config.Rename VirtualMachine.Config.Annotation
VirtualMachine.Config.AddExistingDisk VirtualMachine.Config.AddNewDisk
VirtualMachine.Config.RemoveDisk VirtualMachine.Config.CPUCount
VirtualMachine.Config.Memory VirtualMachine.Config.RawDevice
VirtualMachine.Config.AddRemoveDevice VirtualMachine.Config.Settings
VirtualMachine.Config.AdvancedConfig VirtualMachine.Config.SwapPlacement
VirtualMachine.Config.HostUSBDevice VirtualMachine.Config.DiskExtend
VirtualMachine.Config.ChangeTracking
VirtualMachine.Provisioning.ReadCustSpecs
VirtualMachine.Inventory.CreateFromExisting
VirtualMachine.Inventory.CreateNew VirtualMachine.Inventory.Move
VirtualMachine.Inventory.Register VirtualMachine.Inventory.Remove
VirtualMachine.Inventory.Unregister DVSwitch.CanUse DVPortgroup.CanUse
Datastore.AllocateSpace Datastore.BrowseDatastore
Datastore.LowLevelFileOperations Datastore.RemoveFile Network.Assign
Resource.AssignVirtualMachineToResourcePool

Reconfigures a
particular virtual
machine.

PowerOnVM_TaskVirtualMachine.Interact.PowerOn Powers on a
virtual machine

PowerOf-
fVM_Task

VirtualMachine.Interact.PowerOff Powers off a
virtual machine

De-
stroy_Task

VirtualMachine.Inventory.Delete Deletes a VM
(including disks)

Sus-
pendVM_Task

VirtualMachine.Interact.Suspend Suspends a VM

Re-
bootGuest

VirtualMachine.Interact.Reset Reboots VM’s
guest Operating
System

Re-
setVM_Task

VirtualMachine.Interact.Reset Resets power on a
virtual machine

Shut-
downGuest

VirtualMachine.Interact.PowerOff Shutdown guest
Operating System

Cre-
ateS-
nap-
shot_Task

VirtualMachine.State.CreateSnapshot Creates a new
snapshot of a
virtual machine.

Re-
moveS-
nap-
shot_Task

VirtualMachine.State.RemoveSnapshot Removes a
snapshot form a
virtual machine

Revert-
ToSnap-
shot_Task

VirtualMachine.State.RevertToSnapshot Revert a virtual
machine to a
particular
snapshot

Create-
Vir-
tualD-
isk_Task

Datastore.FileManagement On all VMFS
datastores
represented by
OpenNebula

Copy-
Vir-
tualD-
isk_Task

Datastore.FileManagement On all VMFS
datastores
represented by
OpenNebula

Delete-
Vir-
tualD-
isk_Task

Datastore.FileManagement On all VMFS
datastores
represented by
OpenNebula

3.3. vCenter Node Installation 34

OpenNebula 5.2 Deployment guide, Release 5.2.1

Note: For security reasons, you may define different users to access different ESX Clusters. A different user can be
defined in OpenNebula per ESX cluster, which is encapsulated in OpenNebula as an OpenNebula host.

• All ESX hosts belonging to the same ESX cluster to be exposed to OpenNebula must share at least one datastore
among them.

• The ESX cluster should have DRS enabled. DRS is not required but it is recommended. OpenNebula does
not schedule to the granularity of ESX hosts, DRS is needed to select the actual ESX host within the cluster,
otherwise the VM will be launched in the ESX where the VM template has been created.

• Save as VM Templates those VMs that will be instantiated through the OpenNebula provisioning portal

• To enable VNC functionality, repeat the following procedure for each ESX:

– In the vSphere client proceed to Home -> Inventory -> Hosts and Clusters

– Select the ESX host, Configuration tab and select Security Profile in the Software category

– In the Firewall section, select Edit. Enable GDB Server, then click OK

– Make sure that the ESX hosts are reachable from the OpenNebula Front-end

Important: OpenNebula will NOT modify any vCenter configuration.

3.3.2 Configuration

There are a few simple steps needed to configure OpenNebula so it can interact with vCenter:

Step 1: Check connectivity

The OpenNebula Front-end needs network connectivity to all the vCenters that it is supposed to manage.

Additionally, to enable VNC access to the spawned Virtual Machines, the Front-end also needs network connectivity
to all the ESX hosts

Step 2: Enable the drivers in the Front-end (oned.conf)

In order to configure OpenNebula to work with the vCenter drivers, the following sections need to be uncommented
or added in the /etc/one/oned.conf file:

#---
vCenter Information Driver Manager Configuration
-r number of retries when monitoring a host
-t number of threads, i.e. number of hosts monitored at the same time
#---
IM_MAD = [

NAME = "vcenter",
SUNSTONE_NAME = "VMWare vCenter",
EXECUTABLE = "one_im_sh",
ARGUMENTS = "-c -t 15 -r 0 vcenter"]

#---

#---
vCenter Virtualization Driver Manager Configuration

3.3. vCenter Node Installation 35

OpenNebula 5.2 Deployment guide, Release 5.2.1

-r number of retries when monitoring a host
-t number of threads, i.e. number of hosts monitored at the same time
-p more than one action per host in parallel, needs support from hypervisor
-s <shell> to execute commands, bash by default
-d default snapshot strategy. It can be either 'detach' or 'suspend'. It
defaults to 'suspend'.
#---
VM_MAD = [

NAME = "vcenter",
SUNSTONE_NAME = "VMWare vCenter",
EXECUTABLE = "one_vmm_sh",
ARGUMENTS = "-p -t 15 -r 0 vcenter -s sh",
default = "vmm_exec/vmm_exec_vcenter.conf",
TYPE = "xml",
IMPORTED_VMS_ACTIONS = "terminate, terminate-hard, hold, release, suspend,

resume, delete, reboot, reboot-hard, resched, unresched, poweroff,
poweroff-hard, disk-attach, disk-detach, nic-attach, nic-detach,
snap-create, snap-delete"

]
#---

As a Virtualization driver, the vCenter driver accept a series of parameters that control their execution. The parameters
allowed are:

parameter description
-r <num> number of retries when executing an action
-t <num number of threads, i.e. number of actions done at the same time

See the Virtual Machine drivers reference for more information about these parameters, and how to customize and
extend the drivers.

OpenNebula needs to be restarted afterwards, this can be done with the following command:

$ sudo service opennebula restart

Step 3: Importing vCenter Clusters

OpenNebula ships with a powerful CLI tool to import vCenter clusters, VM Templates, Networks and running VMs.
The tools is self-explanatory, just set the credentials and FQDN/IP to access the vCenter host and follow on screen
instructions. A sample section follows:

$ onehost list
ID NAME CLUSTER RVM ALLOCATED_CPU ALLOCATED_MEM STAT

$ onevcenter hosts --vcenter <vcenter-host> --vuser <vcenter-username> --vpass
→˓<vcenter-password>
Connecting to vCenter: <vcenter-host>...done!
Exploring vCenter resources...done!
Do you want to process datacenter Development [y/n]? y

* Import cluster clusterA [y/n]? y
OpenNebula host clusterA with id 0 successfully created.

* Import cluster clusterB [y/n]? y
OpenNebula host clusterB with id 1 successfully created.

$ onehost list
ID NAME CLUSTER RVM ALLOCATED_CPU ALLOCATED_MEM STAT

3.3. vCenter Node Installation 36

OpenNebula 5.2 Deployment guide, Release 5.2.1

0 clusterA - 0 - - init
1 clusterB - 0 - - init

$ onehost list
ID NAME CLUSTER RVM ALLOCATED_CPU ALLOCATED_MEM STAT
0 clusterA - 0 0 / 800 (0%) 0K / 16G (0%) on
1 clusterB - 0 - - init

$ onehost list
ID NAME CLUSTER RVM ALLOCATED_CPU ALLOCATED_MEM STAT
0 clusterA - 0 0 / 800 (0%) 0K / 16G (0%) on
1 clusterB - 0 0 / 1600 (0%) 0K / 16G (0%) on

The following variables are added to the OpenNebula hosts representing ESX clusters:

Operation Note
VCENTER_HOST hostname or IP of the vCenter host
VCENTER_USER Name of the vCenter user
VCENTER_PASSWORD Password of the vCenter user

Once the vCenter cluster is monitored, OpenNebula will display any existing VM as Wild. These VMs can be imported
and managed through OpenNebula.

Note: OpenNebula will create a special key at boot time and save it in /var/lib/one/.one/one_key. This
key will be used as a private key to encrypt and decrypt all the passwords for all the vCenters that OpenNebula can
access. Thus, the password shown in the OpenNebula host representing the vCenter is the original password encrypted
with this special key.

Note: OpenNebula will add by default a one-<vid>- prefix to the name of the vCenter VMs it spawns, where
<vid> is the id of the VM in OpenNebula. This value can be changed using a special attribute set in the vCenter
cluster representation in OpenNebula, ie, the OpenNebula host. This attribute is called VM_PREFIX (which can be
set in the OpenNebula host template), and will evaluate one variable, $i, to the id of the VM. A value of one-$i-
in that parameter would have the same behavior as the default.

After this guide, you may want to verify your installation or learn how to setup the vmware-based cloud infrastructure.

Step 4: Next Steps

Jump to the Verify your Installation section in order to get to launch a test VM.

3.4 Verify your Installation

This chapter ends with this optional section, where you will be able to test your cloud by launching a virtual machine
and test that everything is working correctly.

You should only follow the specific subsection for your hypervisor.

3.4.1 KVM based Cloud Verification

The goal of this subsection is to launch a small Virtual Machine, in this case a TTYLinux (which is a very small Virtual
Machine just for testing purposes).

3.4. Verify your Installation 37

OpenNebula 5.2 Deployment guide, Release 5.2.1

Requirements

To complete this section, you must have network connectivity to the Internet from the Front-end, in order to import an
appliance from http://marketplace.opennebula.systems .

Step 1. Check that the Hosts are on

The Hosts that you have registered should be in ON status.

Step 2. Import an appliance from the MarketPlace.

We need to add an Image to our Cloud. To do so we can do so by navigating to Storage -> Apps in the left side menu
(1). You will see a list of Appliances, you can filter by tty kvm (2) in order to find the one we are going to use in
this guide. After that select it (3) and click to button with an arrow pointing to OpenNebula (4) in order to import it.

3.4. Verify your Installation 38

http://marketplace.opennebula.systems

OpenNebula 5.2 Deployment guide, Release 5.2.1

A dialog with the information of the appliance you have selected will pop up. You will need to select the datastore
under the “Select the Datastore to store the resource” (1) and then click on the “Download” button (2)

Navigate now to the Storage -> Images tab and refresh until the Status of the Image switches to READY.

3.4. Verify your Installation 39

OpenNebula 5.2 Deployment guide, Release 5.2.1

Step 3. Instantiate a VM

Navigate to Templates -> VMs, then select the ttylinux - kvm template that has been created and click on the
“Instantiate”.

In this dialog simply click on the “Instantiate” button.

3.4. Verify your Installation 40

OpenNebula 5.2 Deployment guide, Release 5.2.1

Step 4. Test VNC access

Navigate to Instances -> VMs. You will see that after a while the VM switches to Status RUNNING (you might need
to click on the refresh button). Once it does, you can click on the VNC icon (at the right side of the image below).

If the VM fails, click on the VM and then in the Log tab to see why it failed. Alternatively, you can look at the log
file /var/log/one/<vmid>.log.

3.4. Verify your Installation 41

OpenNebula 5.2 Deployment guide, Release 5.2.1

Step 5. Adding Network connectivity to your VM

As you might have noticed, this VM does not have networking yet, this is because it depends a lot in your network
technology. You would need to follow these steps in order to add Networking to the template.

1. Read the Networking chapter to choose a network technology, unless you have chosen to use the dummy driver
explained in the node installation section and you have configured the bridges properly.

2. Create a new Network in the Network -> Virtual Networks dialog, and fill in the details of your network: like
the Bridge, or the Physical Device, the IP ranges, etc.

3. Select the ttylinux - kvm template and update it. In the Network section of the template, select the network
that you created in the previous step.

4. Instantiate and connect to the VM.

3.4.2 vCenter based Cloud Verification

In order to verify the correct installation of your OpenNebua cloud, follow the next steps. The following assumes that
Sunstone is up and running, as explained in the front-end installation Section. To access Sunstone, point your browser
to http://<fontend_address>:9869.

Step 1. Import a VM Template

You will need a VM Template defined in vCenter, and then import it using the steps described in the vCenter Node
Section.

Step 2. Instantiate the VM Template

You can easily instantiate the template to create a new VM from it using Sunstone. Proceed to the Templates tab of
the left side menu, VMs Section, select the imported template and click on the Instantiate button.

3.4. Verify your Installation 42

OpenNebula 5.2 Deployment guide, Release 5.2.1

Step 3. Check the VM is Running

The scheduler should place the VM in the vCenter cluster imported as part of the vCenter Node Installation Section.

After a few minutes (depending on the size of the disks defined by the VM Template), the sate of the VM should be
RUNNING. You can check the process in Sunstone in the Instances tab of the left side menu, VMs Section.

Once the VM is running, click on the VNC blue icon, and if you can see a console to the VM, congratulations! You
have a fully functional OpenNebula cloud.

The next step would be to further configure the OpenNebula cloud to suits your needs. You can learn more in the
VMware Infrastructure Setup guide.

3.4.3 Next steps

After this chapter, you are ready to start using your cloud or you could configure more components:

• Authenticaton. (Optional) For integrating OpenNebula with LDAP/AD, or securing it further with other authen-
tication technologies.

3.4. Verify your Installation 43

OpenNebula 5.2 Deployment guide, Release 5.2.1

• Sunstone. OpenNebula GUI should working and accessible at this stage, but by reading this guide you will learn
about specific enhanced configurations for Sunstone.

If your cloud is KVM based you should also follow:

• Open Cloud Host Setup.

• Open Cloud Storage Setup.

• Open Cloud Networking Setup.

Otherwise, if it’s VMware based:

• Head over to the VMware Infrastructure Setup chapter.

3.4. Verify your Installation 44

CHAPTER

FOUR

AUTHENTICATION SETUP

4.1 Overview

OpenNebula comes by default with an internal user/password authentication system, see the Users & Groups Subsys-
tem guide for more information. You can enable an external Authentication driver.

4.1.1 Authentication

In the figure to the right of this text you can see three authentication configurations you can customize in OpenNebula.

a) CLI/API Authentication

You can choose from the following authentication drivers to access OpenNebula from the command line:

• Built-in User/Password and token authentication

• SSH Authentication

• X509 Authentication

• LDAP Authentication

b) Sunstone Authentication

By default any authentication driver configured to work with OpenNebula can be used out-of-the-box with Sunstone.
Additionally you can add SSL security to Sunstone as described in the Sunstone documentation

45

OpenNebula 5.2 Deployment guide, Release 5.2.1

c) Servers Authentication

This method is designed to delegate the authentication process to high level tools interacting with OpenNebula. You’ll
be interested in this method if you are developing your own servers.

By default, OpenNebula ships with two servers: Sunstone and EC2. When a user interacts with one of them, the server
authenticates the request and then forwards the requested operation to the OpenNebula daemon.

The forwarded requests are encrypted by default using a Symmetric Key mechanism. The following guide shows how
to strengthen the security of these requests using x509 certificates. This is specially relevant if you are running your
server in a machine other than the front-end.

• Cloud Servers Authentication

4.1.2 How Should I Read This Chapter

When designing the architecture of your cloud you will have to choose where to store user’s credentials. Different
authentication methods can be configured at the same time and selected per user basis. One big distinction between
the different authentication methods is the ability to be used by API, CLI and/or only Sunstone (web interface).

Can be used with API, CLI and Sunstone:

• Built-in User/Password

• LDAP

Can be used only with API and CLI:

• SSH

Can be used only with Sunstone:

• X509

The following sections are self-contained so you can directly go to the guide that describes the configuration for the
chosen auth method.

4.1.3 Hypervisor Compatibility

Section Compatibility
Built-in User/Password and token authentication This Section applies to both KVM and vCenter.
SSH Authentication This Section applies to both KVM and vCenter.
X509 Authentication This Section applies to both KVM and vCenter.
LDAP Authentication This Section applies to both KVM and vCenter.
Sunstone documentation This Section applies to both KVM and vCenter.

4.2 SSH Authentication

This guide will show you how to enable and use the SSH authentication for the OpenNebula CLI. Using this authenti-
cation method, users login to OpenNebula with a token encrypted with their private ssh keys.

4.2.1 Requirements

You don’t need to install any additional software.

4.2. SSH Authentication 46

OpenNebula 5.2 Deployment guide, Release 5.2.1

4.2.2 Considerations & Limitations

With the current release, this authentication method is only valid to interact with OpenNebula using the CLI.

4.2.3 Configuration

OpenNebula Configuration

The Auth MAD and ssh authentication is enabled by default. In case it does not work make sure that the authentication
method is in the list of enabled methods.

AUTH_MAD = [
executable = "one_auth_mad",
authn = "ssh,x509,ldap,server_cipher,server_x509"

]

There is an external plain user/password authentication driver, and existing accounts will keep working as usual.

4.2.4 Usage

Create New Users

This authentication method uses standard ssh RSA key pairs for authentication. Users can create these files if they
don’t exist using this command:

$ ssh-keygen -t rsa

OpenNebula commands look for the files generated at the standard location ($HOME/.ssh/id_rsa) so it is a good
idea not to change the default path. It is also a good idea to protect the private key with a password.

The users requesting a new account have to generate a public key and send it to the administrator. The way to extract
it is the following:

$ oneuser key
Enter PEM pass phrase:
MIIBCAKCAQEApUO+JISjSf02rFVtDr1yar/34EoUoVETx0n+RqWNav+5wi+gHiPp3e03AfEkXzjDYi8F
voS4a4456f1OUQlQddfyPECn59OeX8Zu4DH3gp1VUuDeeE8WJWyAzdK5hg6F+RdyP1pT26mnyunZB8Xd
bll8seoIAQiOS6tlVfA8FrtwLGmdEETfttS9ukyGxw5vdTplse/fcam+r9AXBR06zjc77x+DbRFbXcgI
1XIdpVrjCFL0fdN53L0aU7kTE9VNEXRxK8sPv1Nfx+FQWpX/HtH8ICs5WREsZGmXPAO/IkrSpMVg5taS
jie9JAQOMesjFIwgTWBUh6cNXuYsQ/5wIwIBIw==

The string written to the console must be sent to the administrator, so the can create the new user in a similar way as
the default user/password authentication users.

The following command will create a new user with username ‘newuser’, assuming that the previous public key is
saved in the text file /tmp/pub_key:

$ oneuser create newuser --ssh --read-file /tmp/pub_key

Instead of using the --read-file option, the public key could be specified as the second parameter.

If the administrator has access to the user’s private ssh key, he can create new users with the following command:

$ oneuser create newuser --ssh --key /home/newuser/.ssh/id_rsa

4.2. SSH Authentication 47

OpenNebula 5.2 Deployment guide, Release 5.2.1

Update Existing Users to SSH

You can change the authentication method of an existing user to SSH with the following commands:

$ oneuser chauth <id|name> ssh
$ oneuser passwd <id|name> --ssh --read-file /tmp/pub_key

As with the create command, you can specify the public key as the second parameter, or use the user’s private key
with the --key option.

User Login

Users must execute the ‘oneuser login’ command to generate a login token. The token will be stored in the
$ONE_AUTH environment variable. The command requires the OpenNebula username, and the authentication
method (--ssh in this case).

$ oneuser login newuser --ssh

The default ssh key is assumed to be in ~/.ssh/id_rsa, otherwise the path can be specified with the --key
option.

The generated token has a default expiration time of 10 hour. You can change that with the --time option.

4.3 x509 Authentication

This guide will show you how to enable and use the x509 certificates authentication with OpenNebula. The x509
certificates can be used in two different ways in OpenNebula.

The first option that is explained in this guide enables us to use certificates with the CLI. In this case the user will gen-
erate a login token with his private key, OpenNebula will validate the certificate and decrypt the token to authenticate
the user.

The second option enables us to use certificates with Sunstone and the Public Cloud servers included in OpenNebula.
In this case the authentication is leveraged to Apache or any other SSL capable HTTP proxy that has to be configured
by the administrator. If this certificate is validated the server will encrypt those credentials using a server certificate
and will send the token to OpenNebula.

4.3.1 Requirements

If you want to use the x509 certificates with Sunstone or one of the Public Clouds, you must deploy a SSL capable
HTTP proxy on top of them in order to handle the certificate validation.

4.3.2 Considerations & Limitations

The X509 driver uses the certificate DN as user passwords. The x509 driver will remove any space in the certificate
DN. This may cause problems in the unlikely situation that you are using a CA signing certificate subjects that only
differ in spaces.

4.3. x509 Authentication 48

OpenNebula 5.2 Deployment guide, Release 5.2.1

4.3.3 Configuration

The following table summarizes the available options for the x509 driver (/etc/one/auth/x509_auth.conf):

VARI-
ABLE

VALUE

:ca_dir Path to the trusted CA directory. It should contain the trusted CA’s for the server, each CA certificate
should be name CA_hash.0

:check_crlBy default, if you place CRL files in the CA directory in the form CA_hash.r0, OpenNebula will check
them. You can enforce CRL checking by defining :check_crl, i.e. authentication will fail if no CRL file is
found. You can always disable this feature by moving or renaming .r0 files

Follow these steps to change oneadmin’s authentication method to x509:

Warning: You should have another account in the oneadmin group, so you can revert these steps if the process
fails.

• Change the oneadmin password to the oneadmin certificate DN.

$ oneuser chauth 0 x509 --x509 --cert /tmp/newcert.pem

• Add trusted CA certificates to the certificates directory

$ openssl x509 -noout -hash -in cacert.pem
78d0bbd8

$ sudo cp cacert.pem /etc/one/auth/certificates/78d0bbd8.0

• Create a login for oneadmin using the –x509 option. This token has a default expiration time set to 1 hour, you
can change this value using the option –time.

$ oneuser login oneadmin --x509 --cert newcert.pem --key newkey.pem
Enter PEM pass phrase:
export ONE_AUTH=/home/oneadmin/.one/one_x509

• Set ONE_AUTH to the x509 login file

$ export ONE_AUTH=/home/oneadmin/.one/one_x509

4.3.4 Usage

Add and Remove Trusted CA Certificates

You need to copy all trusted CA certificates to the certificates directory, renaming each of them as <CA_hash>.0.
The hash can be obtained with the openssl command:

$ openssl x509 -noout -hash -in cacert.pem
78d0bbd8

$ sudo cp cacert.pem /etc/one/auth/certificates/78d0bbd8.0

To stop trusting a CA, simply remove its certificate from the certificates directory.

This process can be done without restarting OpenNebula, the driver will look for the certificates each time an authen-
tication request is made.

4.3. x509 Authentication 49

OpenNebula 5.2 Deployment guide, Release 5.2.1

Create New Users

The users requesting a new account have to send their certificate, signed by a trusted CA, to the administrator. The
following command will create a new user with username ‘newuser’, assuming that the user’s certificate is saved in
the file /tmp/newcert.pem:

$ oneuser create newuser --x509 --cert /tmp/newcert.pem

This command will create a new user whose password contains the subject DN of his certificate. Therefore if the
subject DN is known by the administrator the user can be created as follows:

$ oneuser create newuser --x509 "user_subject_DN"

Update Existing Users to x509 & Multiple DN

You can change the authentication method of an existing user to x509 with the following command:

• Using the user certificate:

$ oneuser chauth <id|name> x509 --x509 --cert /tmp/newcert.pem

• Using the user certificate subject DN:

$ oneuser chauth <id|name> x509 --x509 "user_subject_DN"

You can also map multiple certificates to the same OpenNebula account. Just add each certificate DN separated with
‘|’ to the password field.

$ oneuser passwd <id|name> --x509 "/DC=es/O=one/CN=user|/DC=us/O=two/CN=user"

User Login

Users must execute the ‘oneuser login’ command to generate a login token. The token will be stored in the
$ONE_AUTH environment variable. The command requires the OpenNebula username, and the authentication
method (--x509 in this case).

newuser@frontend $ oneuser login newuser --x509 --cert newcert.pem --key newkey.pem
Enter PEM pass phrase:

The generated token has a default expiration time of 10 hours. You can change that with the --time option.

4.3.5 Tuning & Extending

The x509 authentication method is just one of the drivers enabled in AUTH_MAD. All drivers are located in /var/
lib/one/remotes/auth.

OpenNebula is configured to use x509 authentication by default. You can customize the enabled drivers in the
AUTH_MAD attribute of oned.conf . More than one authentication method can be defined:

AUTH_MAD = [
executable = "one_auth_mad",
authn = "ssh,x509,ldap,server_cipher,server_x509"

]

4.3. x509 Authentication 50

OpenNebula 5.2 Deployment guide, Release 5.2.1

4.3.6 Enabling x509 auth in Sunstone

Update the /etc/one/sunstone-server.conf :auth parameter to use the x509 auth:

:auth: x509

4.4 LDAP Authentication

The LDAP Authentication add-on permits users to have the same credentials as in LDAP, so effectively centralizing
authentication. Enabling it will let any correctly authenticated LDAP user to use OpenNebula.

4.4.1 Prerequisites

Warning: This Add-on requires the ‘net/ldap’ ruby library provided by the ‘net-ldap’ gem.

This Add-on will not install any Ldap server or configure it in any way. It will not create, delete or modify any entry
in the Ldap server it connects to. The only requirement is the ability to connect to an already running Ldap server and
being able to perform a successful ldapbind operation and have a user able to perform searches of users, therefore no
special attributes or values are required in the LDIF entry of the user authenticating.

4.4.2 Configuration

Configuration file for auth module is located at /etc/one/auth/ldap_auth.conf. This is the default config-
uration:

server 1:
Ldap user able to query, if not set connects as anonymous. For
Active Directory append the domain name. Example:
Administrator@my.domain.com
#:user: 'admin'
#:password: 'password'

Ldap authentication method
:auth_method: :simple

Ldap server
:host: localhost
:port: 389

Uncomment this line for tls connections
#:encryption: :simple_tls

base hierarchy where to search for users and groups
:base: 'dc=domain'

group the users need to belong to. If not set any user will do
#:group: 'cn=cloud,ou=groups,dc=domain'

field that holds the user name, if not set 'cn' will be used
:user_field: 'cn'

4.4. LDAP Authentication 51

OpenNebula 5.2 Deployment guide, Release 5.2.1

for Active Directory use this user_field instead
#:user_field: 'sAMAccountName'

field name for group membership, by default it is 'member'
#:group_field: 'member'

user field that that is in in the group group_field, if not set 'dn' will be
→˓used

#:user_group_field: 'dn'

Generate mapping file from group template info
:mapping_generate: true

Seconds a mapping file remain untouched until the next regeneration
:mapping_timeout: 300

Name of the mapping file in OpenNebula var directory
:mapping_filename: server1.yaml

Key from the OpenNebula template to map to an AD group
:mapping_key: GROUP_DN

Default group ID used for users in an AD group not mapped
:mapping_default: 1

this example server wont be called as it is not in the :order list
server 2:

:auth_method: :simple
:host: localhost
:port: 389
:base: 'dc=domain'
#:group: 'cn=cloud,ou=groups,dc=domain'
:user_field: 'cn'

List the order the servers are queried
:order:

- server 1
#- server 2

The structure is a hash where any key different to :order will contain the configuration of one ldap server we want
to query. The special key :order holds an array with the order we want to query the configured servers. Any server
not listed in :order wont be queried.

4.4. LDAP Authentication 52

OpenNebula 5.2 Deployment guide, Release 5.2.1

VARIABLE DESCRIPTION
:user Name of the user that can query ldap. Do not set it if you can perform queries anonymously
:password Password for the user defined in :user. Do not set if anonymous access is enabled
:auth_method Can be set to :simple_tls if SSL connection is needed
:encryption Can be set to :simple_tls if SSL connection is needed
:host Host name of the ldap server
:port Port of the ldap server
:base Base leaf where to perform user searches
:group If set the users need to belong to this group
:user_field Field in ldap that holds the user name
:mapping_generateGenerate automatically a mapping file. It can be disabled in case it needs to be done manually
:mapping_timeoutNumber of seconds between automatic mapping file generation
:mapping_filenameName of the mapping file. Should be different for each server
:mapping_key Key in the group template used to generate the mapping file. It should hold the DN of the

mapped group
:mapping_defaultDefault group used when no mapped group is found. Set to false in case you don’t want the

user to be authorized if it does not belong to a mapped group

To enable ldap authentication the described parameters should be configured. OpenNebula must be also configured
to enable external authentication. Add this line in /etc/one/oned.conf

DEFAULT_AUTH = "ldap"

4.4.3 User Management

Using LDAP authentication module the administrator doesn’t need to create users with oneuser command as this
will be automatically done.

Users can store their credentials into $ONE_AUTH file (usually $HOME/.one/one_auth) in this fashion:

<user_dn>:ldap_password

where

• <user_dn> the DN of the user in the LDAP service

• ldap_password is the password of the user in the LDAP service

Alternatively a user can generate an authentication token using the oneuser login command, so there is no need
to keep the ldap password in a plain file. Simply input the ldap_password when requested. More information on the
management of login tokens and $ONE_AUTH file can be found in Managing Users Guide.

DN’s With Special Characters

When the user dn or password contains blank spaces the LDAP driver will escape them so they can be used to create
OpenNebula users. Therefore, users needs to set up their $ONE_AUTH file accordingly.

Users can easily create escaped $ONE_AUTH tokens with the command oneuser encode <user>
[<password>], as an example:

$ oneuser encode 'cn=First Name,dc=institution,dc=country' 'pass word'
cn=First%20Name,dc=institution,dc=country:pass%20word

The output of this command should be put in the $ONE_AUTH file.

4.4. LDAP Authentication 53

OpenNebula 5.2 Deployment guide, Release 5.2.1

4.4.4 Active Directory

LDAP Auth drivers are able to connect to Active Directory. You will need:

• Active Directory server with support for simple user/password authentication.

• User with read permissions in the Active Directory user’s tree.

You will need to change the following values in the configuration file (/etc/one/auth/ldap_auth.conf):

• :user: the Active Directory user with read permissions in the user’s tree plus the domain. For example for user
Administrator at domain win.opennebula.org you specify it as Administrator@win.opennebula.
org

• :password: password of this user

• :host: hostname or IP of the Domain Controller

• :base: base DN to search for users. You need to decompose the full domain name and use
each part as DN component. Example, for win.opennebula.org you will get the base DN:
DN=win,DN=opennebula,DN=org

• :user_field: set it to sAMAccountName

:group parameter is still not supported for Active Directory, leave it commented.

4.4.5 Group Mapping

You can make new users belong to an specific group or groups. To do this a mapping is generated from the LDAP
group to an existing OpenNebula group. This system uses a mapping file specified by :mapping_file parameter
and resides in OpenNebula var directory. The mapping file can be generated automatically using data in the group
template that tells which LDAP group maps to that specific group. For example we can add in the group template this
line:

GROUP_DN="CN=technicians,CN=Groups,DC=example,DC=com"

And in the ldap configuration file we set the :mapping_key to GROUP_DN. This tells the driver to look for the group
DN in that template parameter. This mapping expires the number of seconds specified by :mapping_timeout.
This is done so the authentication is not continually querying OpenNebula.

You can also disable the automatic generation of this file and do the mapping manually. The mapping file is in YAML
format and contains a hash where the key is the LDAP’s group DN and the value is the ID of the OpenNebula group.
For example:

CN=technicians,CN=Groups,DC=example,DC=com: '100'
CN=Domain Admins,CN=Users,DC=example,DC=com: '101'

When several servers are configured you should have different :mapping_key and :mapping_file values for
each one so they don’t collide. For example:

internal:
:mapping_file: internal.yaml
:mapping_key: INTERNAL_GROUP_DN

external:
:mapping_file: external.yaml
:mapping_key: EXTERNAL_GROUP_DN

And in the OpenNebula group template you can define two mappings, one for each server:

4.4. LDAP Authentication 54

OpenNebula 5.2 Deployment guide, Release 5.2.1

INTERNAL_GROUP_DN="CN=technicians,CN=Groups,DC=internal,DC=com"
EXTERNAL_GROUP_DN="CN=staff,DC=other-company,DC=com"

Note: If the map is updated (e.g. you change the LDAP DB) the user groups will be updated next time the user
is authenticated. Also note that a user maybe using a login token that needs to expire to this changes to take effect.
The max. life time of a token can be set in oned.conf per each driver. If you want the OpenNebula core not to
update user groups (and control group assigment from OpenNebula) update DRIVER_MANAGED_GROUPS in the
ldap AUTH_MAD_CONF configuration attribute.

4.4.6 Enabling LDAP auth in Sunstone

Update the /etc/one/sunstone-server.conf :auth parameter to use the opennebula:

:auth: opennebula

Using this method the credentials provided in the login screen will be sent to the OpenNebula core and the authen-
tication will be delegated to the OpenNebula auth system, using the specified driver for that user. Therefore any
OpenNebula auth driver can be used through this method to authenticate the user (i.e: LDAP).

To automatically encode credentials as explained in DN’s with special characters section also add this parameter to
sunstone configuration:

:encode_user_password: true

4.4. LDAP Authentication 55

CHAPTER

FIVE

SUNSTONE SETUP

5.1 Overview

OpenNebula Sunstone is a Graphical User Interface (GUI) intended for both end users and administrators that simpli-
fies the typical management operations in private and hybrid cloud infrastructures. OpenNebula Sunstone allows to
easily manage all OpenNebula resources and perform typical operations on them.

56

OpenNebula 5.2 Deployment guide, Release 5.2.1

5.1.1 How Should I Read this Chapter

The Sunstone Installation & Configuration section describes the configuration and customization options for Sunstone

After Sunstone is running, you can define different sunstone behaviors for each user role in the Sunstone Views section.

For more information on how to customize and extend you Sunstone deployment use the following links:

• Security & Authentication Methods, improve security with x509 authentication and SSL

• Cloud Servers Authentication, advanced reference about the security between Sunstone and OpenNebula.

• Advanced Deployments, improving scalability and isolating the server

5.1.2 Hypervisor Compatibility

Sunstone is available for all the hypervisors. When using vCenter, the cloud admin should enable the
admin_vcenter, groupadmin_vcenter and cloud_vcenter Sunstone views.

5.2 Sunstone Installation & Configuration

5.2.1 Requirements

You must have an OpenNebula site properly configured and running to use OpenNebula Sunstone, be sure to check
the OpenNebula Installation and Configuration Guides to set up your private cloud first. This section also assumes
that you are familiar with the configuration and use of OpenNebula.

OpenNebula Sunstone was installed during the OpenNebula installation. If you followed the installation guide then
you already have all ruby gem requirements. Otherwise, run the install_gem script as root:

/usr/share/one/install_gems sunstone

The Sunstone Operation Center offers the possibility of starting a VNC/SPICE session to a Virtual Machine. This is
done by using a VNC/SPICE websocket-based client (noVNC) on the client side and a VNC proxy translating and
redirecting the connections on the server-side.

Warning: The SPICE Web client is a prototype and is limited in function. More information of this component
can be found in the following link

Warning: Make sure that there is free space in sunstone’s log directory or it will die silently. By default the log
directory is /var/log/one.

Requirements:

• Websockets-enabled browser (optional): Firefox and Chrome support websockets. In some versions of Firefox
manual activation is required. If websockets are not enabled, flash emulation will be used.

• Installing the python-numpy package is recommended for a better vnc performance.

5.2. Sunstone Installation & Configuration 57

http://www.spice-space.org/page/Html5

OpenNebula 5.2 Deployment guide, Release 5.2.1

5.2.2 Considerations & Limitations

OpenNebula Sunstone supports Chrome, Firefox and Internet Explorer 11. Other browsers are not supported and may
not work well.

Note: Internet Explorer is not supported with the Compatibility Mode enabled, since it emulates IE7 which is not
supported.

5.2.3 Configuration

sunstone-server.conf

The Sunstone configuration file can be found at /etc/one/sunstone-server.conf. It uses YAML syntax to
define some options:

Available options are:

5.2. Sunstone Installation & Configuration 58

OpenNebula 5.2 Deployment guide, Release 5.2.1

Option Description
:tmpdir Uploaded images will be temporally stored in this folder before being copied to OpenNebula
:one_xmlrpc OpenNebula daemon host and port
:host IP address on which the server will listen on. 0.0.0.0 by default.
:port Port on which the server will listen. 9869 by default.
:sessions Method of keeping user sessions. It can be memory or memcache. For server that spawn more

than one process (like Passenger or Unicorn) memcache should be used
:mem-
cache_host

Host where memcached server resides

:mem-
cache_port

Port of memcached server

:mem-
cache_namespace

memcache namespace where to store sessions. Useful when memcached server is used by more
services

:de-
bug_level

Log debug level: 0 = ERROR, 1 = WARNING, 2 = INFO, 3 = DEBUG

:env Execution environment for Sunstone. dev, Instead of pulling the minified js all the files will be
pulled (app/main.js). Check the Building from Source guide in the docs, for details on how to run
Sunstone in development. prod, the minified js will be used (dist/main.js)

:max_upload_file_sizeMaximum allowed size of uploaded images (in bytes). Leave commented for unlimited size
:auth Authentication driver for incoming requests. Possible values are sunstone, opennebula,

remote and x509. Check authentication methods for more info
:core_auth Authentication driver to communicate with OpenNebula core. Possible values are x509 or

cipher. Check cloud_auth for more information
:en-
code_user_password

For external authentication drivers, such as LDAP. Performs a URL encoding on the credentials sent
to OpenNebula, e.g. secret%20password. This only works with “opennebula” auth.

:lang Default language for the Sunstone interface. This is the default language that will be used if user has
not defined a variable LANG with a different valid value its user template

:vnc_proxy_portBase port for the VNC proxy. The proxy will run on this port as long as Sunstone server does.
29876 by default.

:vnc_proxy_support_wssyes, no, only. If enabled, the proxy will be set up with a certificate and a key to use secure
websockets. If set to only the proxy will only accept encrypted connections, otherwise it will
accept both encrypted or unencrypted ones.

:vnc_proxy_certFull path to certificate file for wss connections.
:vnc_proxy_keyFull path to key file. Not necessary if key is included in certificate.
:vnc_proxy_ipv6Enable ipv6 for novnc. (true or false)
:vnc_request_passwordRequest VNC password for external windows, by default it will not be requested (true or false)
:ta-
ble_order

Default table order, resources get ordered by ID in asc or desc order.

:market-
place_username

Username credential to connect to the Marketplace.

:market-
place_password

Password to connect to the Marketplace.

:market-
place_url

Endpoint to connect to the Marketplace. If commented, a 503 service unavailable error
will be returned to clients.

:one-
flow_server

Endpoint to connect to the OneFlow server.

:routes List of files containing custom routes to be loaded. Check server plugins for more info.

Starting Sunstone

To start Sunstone just issue the following command as oneadmin

5.2. Sunstone Installation & Configuration 59

OpenNebula 5.2 Deployment guide, Release 5.2.1

service opennebula-sunstone start

You can find the Sunstone server log file in /var/log/one/sunstone.log. Errors are logged in /var/log/
one/sunstone.error.

5.2.4 Commercial Support Integration

We are aware that in production environments, access to professional, efficient support is a must, and this is why
we have introduced an integrated tab in Sunstone to access OpenNebula Systems (the company behind OpenNebula,
formerly C12G) professional support. In this way, support ticket management can be performed through Sunstone,
avoiding disruption of work and enhancing productivity.

This tab and can be disabled in each one of the view yaml files.

enabled_tabs:
[...]
#- support-tab

5.2.5 Troubleshooting

Cannot connect to OneFlow server

The Service instances and templates tabs may show the following message:

Cannot connect to OneFlow server

5.2. Sunstone Installation & Configuration 60

http://opennebula.systems

OpenNebula 5.2 Deployment guide, Release 5.2.1

You need to start the OneFlow component following this section, or disable the Service and Service Templates menu
entries in the Sunstone views yaml files.

VNC Troubleshooting

When clicking the VNC icon, the process of starting a session begins:

• A request is made and if a VNC session is possible, Sunstone server will add the VM Host to the list of allowed
vnc session targets and create a random token associated to it.

• The server responds with the session token, then a noVNC dialog pops up.

• The VNC console embedded in this dialog will try to connect to the proxy either using websockets (default) or
emulating them using Flash. Only connections providing the right token will be successful. The token expires
and cannot be reused.

There can be multiple reasons that may prevent noVNC from correctly connecting to the machines. Here’s a checklist
of common problems:

• noVNC requires Python >= 2.5 for the websockets proxy to work. You may also need additional modules as
python2<version>-numpy.

• You can retrieve useful information from /var/log/one/novnc.log

• You must have a GRAPHICS section in the VM template enabling VNC, as stated in the documentation. Make
sure the attribute IP is set correctly (0.0.0.0 to allow connections from everywhere), otherwise, no connec-
tions will be allowed from the outside.

• Your browser must support websockets, and have them enabled. This is the default in current Chrome and
Firefox, but former versions of Firefox (i.e. 3.5) required manual activation. Otherwise Flash emulation will be
used.

• Make sure there are not firewalls blocking the connections. The proxy will redirect the websocket data from
the VNC proxy port to the VNC port stated in the template of the VM. The value of the proxy port is defined in
sunstone-server.conf.

• Make sure that you can connect directly from Sunstone frontend to the VM using a normal VNC client tools
such as vncviewer.

5.2. Sunstone Installation & Configuration 61

OpenNebula 5.2 Deployment guide, Release 5.2.1

• When using secure websockets, make sure that your certificate and key (if not included in certificate) are cor-
rectly set in Sunstone configuration files. Note that your certificate must be valid and trusted for the wss connec-
tion to work. If you are working with a certicificate that it is not accepted by the browser, you can manually add
it to the browser trust-list visiting https://sunstone.server.address:vnc_proxy_port. The
browser will warn that the certificate is not secure and prompt you to manually trust it.

• If your connection is very, very, very slow, there might be a token expiration issue. Please try the manual proxy
launch as described below to check it.

• Doesn’t work yet? Try launching Sunstone, killing the websockify proxy and relaunching the proxy manually
in a console window with the command that is logged at the beginning of /var/log/one/novnc.log.
You must generate a lock file containing the PID of the python process in /var/lock/one/.novnc.lock
Leave it running and click on the VNC icon on Sunstone for the same VM again. You should see some output
from the proxy in the console and hopefully the cause of why the connection does not work.

• Please contact the support forum only when you have gone through the suggestion above and provide full
sunstone logs, shown errors and any relevant information of your infrastructure (if there are Firewalls etc)

• The message “SecurityError: The operation is insecure.” is usually related to a Same-Origin-Policy problem. If
you have Sunstone TLS secured and try to connect to an insecure websocket for VNC, Firefox blocks that. For
Firefox, you need to have both connections secured to not get this error. And don’t use a self-signed certificate
for the server, this would raise the error again (you can setup your own little CA, that works, but don’t use a
self-signed server certificate). The other option would be to go into the Firefox config (about:config) and set
“network.websocket.allowInsecureFromHTTPS” to “true”.

5.2.6 Tuning & Extending

Internationalization and Languages

Sunstone supports multiple languages. If you want to contribute a new language, make corrections or complete a
translation, you can visit our:

• Transifex poject page

Translating through Transifex is easy and quick. All translations should be submitted via Transifex.

Users can update or contribute translations anytime. Prior to every release, normally after the beta release, a call for
translations will be made in the forum. Then the source strings will be updated in Transifex so all the translations can
be updated to the latest OpenNebula version. Translation with an acceptable level of completeness will be added to
the final OpenNebula release.

Customize the VM Logos

The VM Templates have an image logo to identify the guest OS. To modify the list of available logos, or to add new
ones, edit /etc/one/sunstone-logos.yaml.

- { 'name': "Arch Linux", 'path': "images/logos/arch.png"}
- { 'name': "CentOS", 'path': "images/logos/centos.png"}
- { 'name': "Debian", 'path': "images/logos/debian.png"}
- { 'name': "Fedora", 'path': "images/logos/fedora.png"}
- { 'name': "Linux", 'path': "images/logos/linux.png"}
- { 'name': "Redhat", 'path': "images/logos/redhat.png"}
- { 'name': "Ubuntu", 'path': "images/logos/ubuntu.png"}
- { 'name': "Windows XP/2003", 'path': "images/logos/windowsxp.png"}
- { 'name': "Windows 8", 'path': "images/logos/windows8.png"}

5.2. Sunstone Installation & Configuration 62

https://www.transifex.com/projects/p/one/

OpenNebula 5.2 Deployment guide, Release 5.2.1

Branding the Sunstone Portal

You can easily add you logos to the login and main screens by updating the logo: attribute as follows:

• The login screen is defined in the /etc/one/sunstone-views.yaml.

• The logo of the main UI screen is defined for each view in the view yaml file.

sunstone-views.yaml

OpenNebula Sunstone can be adapted to different user roles. For example, it will only show the resources the users
have access to. Its behavior can be customized and extended via views.

The preferred method to select which views are available to each group is to update the group configuration from
Sunstone; as described in Sunstone Views section. There is also the /etc/one/sunstone-views.yaml file that
defines an alternative method to set the view for each user or group.

Sunstone will calculate the views available to each user using:

• From all the groups the user belongs to, the views defined inside each group are combined and presented to the
user

• If no views are available from the user’s group, the defaults would be fetched from /etc/one/
sunstone-views.yaml. Here, views can be defined for:

– Each user (users: section), list each user and the set of views available for her.

– Each group (groups: section), list the set of views for the group.

– The default view, if a user is not listed in the users: section, nor its group in the groups: section, the
default views will be used.

– The default views for group admins, if a group admin user is not listed in the users: section, nor its
group in the groups: section, the default_groupadmin views will be used.

By default users in the oneadmin group have access to all views, and users in the users group can use the coud
view.

5.2. Sunstone Installation & Configuration 63

OpenNebula 5.2 Deployment guide, Release 5.2.1

The following /etc/one/sunstone-views.yaml example enables the user (user.yaml) and the cloud
(cloud.yaml) views for helen and the cloud (cloud.yaml) view for group cloud-users. If more than one view is available
for a given user the first one is the default.

logo: images/opennebula-sunstone-v4.0.png
users:

helen:
- cloud
- user

groups:
cloud-users:

- cloud
default:

- user
default_groupadmin:

- groupadmin
- cloud

A Different Endpoint for Each View

OpenNebula Sunstone views can be adapted to deploy a different endpoint for each kind of user. For example if you
want an endpoint for the admins and a different one for the cloud users. You will just have to deploy a new sunstone
server and set a default view for each sunstone instance:

Admin sunstone
cat /etc/one/sunstone-server.conf

...
:host: admin.sunstone.com
...

cat /etc/one/sunstone-views.yaml
...
users:
groups:
default:

- admin

Users sunstone
cat /etc/one/sunstone-server.conf

...
:host: user.sunstone.com
...

cat /etc/one/sunstone-views.yaml
...
users:
groups:
default:

- user

5.2. Sunstone Installation & Configuration 64

OpenNebula 5.2 Deployment guide, Release 5.2.1

5.3 Sunstone Views

Using the OpenNebula Sunstone Views you will be able to provide a simplified UI aimed at end-users of an Open-
Nebula cloud. The OpenNebula Sunstone Views are fully customizable, so you can easily enable or disable specific
information tabs or action buttons. You can define multiple views for different user groups. Each view defines a set of
UI components so each user just accesses and views the relevant parts of the cloud for her role.

The OpenNebula Sunstone Views can be grouped into two different layouts. On one hand, the classic Sunstone layout
exposes a complete view of the cloud, allowing administrators and advanced users to have full control of any physical
or virtual resource of the cloud. On the other hand, the cloud layout exposes a simplified version of the cloud where
end-users will be able to manage any virtual resource of the cloud, without taking care of the physical resources
management.

5.3.1 Default Views

Admin View

This view provides full control of the cloud. Details can be configured in the /etc/one/sunstone-views/
admin.yaml file.

5.3. Sunstone Views 65

OpenNebula 5.2 Deployment guide, Release 5.2.1

Admin vCenter View

Based on the Admin View. It is designed to present the valid operations against a vCenter infrastructure to a cloud
administrator. Details can be configured in the /etc/one/sunstone-views/admin_vcenter.yaml file.

Group Admin View

Based on the Admin View. It provides control of all the resources belonging to a group, but with no access to resources
outside that group, that is, restricted to the physical and virtual resources of the group. This view features the ability
to create new users within the group as well as set and keep track of user quotas. For more information on how to
configure this scenario see this section

Cloud View

This is a simplified view mainly intended for end-users that just require a portal where they can provision new virtual
machines easily from pre-defined Templates. For more information about this view, please check the /etc/one/
sunstone-views/cloud.yaml file.

In this scenario the cloud administrator must prepare a set of templates and images and make them available to the
cloud users. These Templates must be ready to be instantiated. Before using them, users can optionally customize the
VM capacity, add new network interfaces and provide values required by the template. Thereby, the user doesn’t have
to know any details of the infrastructure such as networking or storage. For more information on how to configure this
scenario see this section

5.3. Sunstone Views 66

OpenNebula 5.2 Deployment guide, Release 5.2.1

vCenter Cloud View

Based on the Cloud View, this view is designed to present the valid operations against a vCenter infrastructure to a
cloud end-user.

User View

Based on the Admin View, it is an advanced user view. It is intended for users that need access to more actions
that the limited set available in the cloud view. Users will not be able to manage nor retrieve the hosts and clusters
of the cloud. They will be able to see Datastores and Virtual Networks in order to use them when creating a new
Image or Virtual Machine, but they will not be able to create new ones. Details can be configured in the /etc/one/
sunstone-views/user.yaml file.

5.3.2 Configuring Access to the Views

By default, the admin view is only available to the oneadmin group. New users will be included in the users
group and will use the default cloud view. The views assigned to a given group can be defined in the group creation
form or updating an existing group to implement different OpenNebula models. For more information on the different
OpenNebula models please check the Understanding OpenNebula documentation.

5.3. Sunstone Views 67

OpenNebula 5.2 Deployment guide, Release 5.2.1

5.3.3 Usage

Sunstone users can change their current view from the top-right drop-down menu:

They can also configure several options from the settings tab:

• Views: change between the different available views

5.3. Sunstone Views 68

OpenNebula 5.2 Deployment guide, Release 5.2.1

• Language: select the language that they want to use for the UI.

• Use secure websockets for VNC: Try to connect using secure websockets when starting VNC sessions.

• Display Name: If the user wishes to customize the username that is shown in Sunstone it is possible to so by
adding a special parameter named SUNSTONE/DISPLAY_NAME with the desired value. It is worth noting that
Cloud Administrators may want to automate this with a hook on user create in order to fetch the user name from
outside OpenNebula.

These options are saved in the user template, as well as other hidden settings like for instance the attribute that lets
Sunstone remember the number of items displayed in the datatables per user. If not defined, defaults from /etc/
one/sunstone-server.conf are taken.

5.3.4 Defining a New OpenNebula Sunstone View or Customizing an Existing one

View definitions are placed in the /etc/one/sunstone-views directory. Each view is defined by a configuration
file, in the form:

<view_name>.yaml

The name of the view will be the filename without the yaml extension.

/etc/one/
...
|-- sunstone-views/
| |-- admin.yaml <--- the admin view
| `-- cloud.yaml <--- the cloud view
`-- sunstone-views.yaml
...

Note: The easiest way to create a custom view is to copy the admin.yaml or cloud.yaml file and then harden it

5.3. Sunstone Views 69

OpenNebula 5.2 Deployment guide, Release 5.2.1

as needed.

Admin View Customization

The contents of a view file specifies the enabled features, visible tabs, and enabled actions

For the dashboard, the following widgets can be configured:

The following widgets can be used inside any of the '_per_row' settings
bellow. As the name suggest, the widgets will be scaled to fit one,
two, or three per row. The footer uses the widgets at full size, i.e.
one per row.
#
- storage
- users
- network
- hosts
- vms
- groupquotas
- quotas
panel_tabs:
actions:

Dashboard.refresh: false
Sunstone.toggle_top: false

widgets_one_per_row:
- vms
- hosts
- users

widgets_three_per_row:
widgets_two_per_row:

- storage
- network

widgets_one_footer:

Inside features there are two settings:

• showback: When this is false, all Showback features are hidden. The monthly report tables, and the cost for
new VMs in the create VM wizard.

• secgroups: If true, the create VM wizard will allow to add security groups to each network interface.

features:
True to show showback monthly reports, and VM cost
showback: true

Allows to change the security groups for each network interface
on the VM creation dialog
secgroups: true

This file also defines the tabs available in the view (note: tab is one of the main sections of the UI, those in the left-side
menu). Each tab can be enabled or disabled by updating the enabled_tabs: attribute. For example to disable the
Clusters tab, comment the clusters-tab entry:

enabled_tabs:
- dashboard-tab
- instances-top-tab
- vms-tab

5.3. Sunstone Views 70

OpenNebula 5.2 Deployment guide, Release 5.2.1

- oneflow-services-tab
- templates-top-tab
- templates-tab
- oneflow-templates-tab
- storage-top-tab
- datastores-tab
- images-tab
- files-tab
- marketplaces-tab
- marketplaceapps-tab
- network-top-tab
- vnets-tab
- vrouters-tab
- vnets-topology-tab
- secgroups-tab
- infrastructure-top-tab
#- clusters-tab
- hosts-tab
- zones-tab
- system-top-tab
- users-tab
- groups-tab
- vdcs-tab
- acls-tab
- settings-tab
- support-tab

Each tab can be tuned by selecting:

• The individual resource tabs available (panel_tabs: attribute) in the tab, these are the tabs activated when
an object is selected (e.g. the information, or capacity tabs in the Virtual Machines tab).

• The columns shown in the main information table (table_columns: attribute).

• The action buttons available to the view (actions: attribute).

The attributes in each of the above sections should be self-explanatory. As an example, the following section defines
a simplified datastore tab, without the info panel_tab and no action buttons:

datastores-tab:
panel_tabs:

datastore_info_tab: false
datastore_image_tab: true
datastore_clusters_tab: false

table_columns:
- 0 # Checkbox
- 1 # ID
- 2 # Owner
- 3 # Group
- 4 # Name
- 5 # Capacity
- 6 # Cluster
#- 7 # Basepath
#- 8 # TM
#- 9 # DS
- 10 # Type
- 11 # Status
#- 12 # Labels

actions:

5.3. Sunstone Views 71

OpenNebula 5.2 Deployment guide, Release 5.2.1

Datastore.refresh: true
Datastore.create_dialog: false
Datastore.import_dialog: false
Datastore.addtocluster: false
Datastore.rename: false
Datastore.chown: false
Datastore.chgrp: false
Datastore.chmod: false
Datastore.delete: false
Datastore.enable: false
Datastore.disable: false

Cloud View Customization

The cloud layout can also be customized by changing the corresponding /etc/one/sunstone-views/ yaml
files. In this file you can customize the options available when instantiating a new template, the dashboard setup or the
resources available for cloud users.

Features

• showback: When this is false, all Showback features are hidden. The monthly report tables, and the cost for
new VMs in the create VM wizard.

• secgroups: If true, the create VM wizard will allow to add security groups to each network interface.

features:
True to show showback monthly reports, and VM cost
showback: true

Allows to change the security groups for each network interface
on the VM creation dialog
secgroups: true

Resources

The list of VMs is always visible. The list of VM Templates and OneFlow Services can be hidden with the
provision_tabs setting.

tabs:
provision-tab:

provision_tabs:
flows: true
templates: true

Dashboard

The dashboard can be configured to show user’s quotas, group quotas, overview of user VMs, overview of group VMs

tabs:
dashboard:

Connected user's quotas

5.3. Sunstone Views 72

OpenNebula 5.2 Deployment guide, Release 5.2.1

quotas: true
Overview of connected user's VMs
vms: true
Group's quotas
vdcquotas: false
Overview of group's VMs
vdcvms: false

Create VM Wizard

The create VM wizard can be configured with the following options:

tabs:
create_vm:

True to allow capacity (CPU, MEMORY, VCPU) customization
capacity_select: true
True to allow NIC customization
network_select: true
True to allow DISK size customization
disk_resize: true

Actions

The actions available for a given VM can be customized and extended by modifying the yaml file. You can even insert
VM panels from the admin view into this view, for example to use the disk snapshots or scheduled actions.

• Hiding the delete button

tabs:
provision-tab:

...
actions: &provisionactions

...
VM.shutdown_hard: false
VM.delete: false

• Using undeploy instead of power off

tabs:
provision-tab:

...
actions: &provisionactions

...
VM.poweroff: false
VM.poweroff_hard: false
VM.undeploy: true
VM.undeploy_hard: true

• Adding panels from the admin view, for example the disk snapshots tab

tabs:
provision-tab:

panel_tabs:
...

5.3. Sunstone Views 73

OpenNebula 5.2 Deployment guide, Release 5.2.1

vm_snapshot_tab: true
...

...
actions: &provisionactions

...
VM.disk_snapshot_create: true
VM.disk_snapshot_revert: true
VM.disk_snapshot_delete: true

5.4 User Security and Authentication

By default Sunstone works with the core authentication method (user and password) although you can configure any
authentication mechanism supported by OpenNebula. In this section you will learn how to enable other authentication
methods and how to secure the Sunstone connections through SSL.

5.4.1 Authentication Methods

Authentication is two-folded:

• Web client and Sunstone server. Authentication is based on the credentials stored in the OpenNebula database
for the user. Depending on the type of this credentials the authentication method can be: sunstone, x509 and
opennebula (supporting LDAP or other custom methods).

• Sunstone server and OpenNebula core. The requests of a user are forwarded to the core daemon, including the
original user name. Each request is signed with the credentials of an special server user. This authentication

5.4. User Security and Authentication 74

OpenNebula 5.2 Deployment guide, Release 5.2.1

mechanism is based either in symmetric key cryptography (default) or x509 certificates. Details on how to
configure these methods can be found in the Cloud Authentication section.

The following sections details the client-to-Sunstone server authentication methods.

Basic Auth

In the basic mode, username and password are matched to those in OpenNebula’s database in order to authorize the
user at the time of login. Rack cookie-based sessions are then used to authenticate and authorize the requests.

To enable this login method, set the :auth: option of /etc/one/sunstone-server.conf to sunstone:

:auth: sunstone

OpenNebula Auth

Using this method the credentials included in the header will be sent to the OpenNebula core and the authentication
will be delegated to the OpenNebula auth system, using the specified driver for that user. Therefore any OpenNebula
auth driver can be used through this method to authenticate the user (i.e: LDAP). The sunstone configuration is:

:auth: opennebula

x509 Auth

This method performs the login to OpenNebula based on a x509 certificate DN (Distinguished Name). The DN is
extracted from the certificate and matched to the password value in the user database.

The user password has to be changed running one of the following commands:

$ oneuser chauth new_user x509 "/C=ES/O=ONE/OU=DEV/CN=clouduser"

or the same command using a certificate file:

$ oneuser chauth new_user --x509 --cert /tmp/my_cert.pem

New users with this authentication method should be created as follows:

$ oneuser create new_user "/C=ES/O=ONE/OU=DEV/CN=clouduser" --driver x509

or using a certificate file:

$ oneuser create new_user --x509 --cert /tmp/my_cert.pem

To enable this login method, set the :auth: option of /etc/one/sunstone-server.conf to x509:

:auth: x509

The login screen will not display the username and password fields anymore, as all information is fetched from the
user certificate:

5.4. User Security and Authentication 75

OpenNebula 5.2 Deployment guide, Release 5.2.1

Note that OpenNebula will not verify that the user is holding a valid certificate at the time of login: this is expected
to be done by the external container of the Sunstone server (normally Apache), whose job is to tell the user’s browser
that the site requires a user certificate and to check that the certificate is consistently signed by the chosen Certificate
Authority (CA).

Warning: Sunstone x509 auth method only handles the authentication of the user at the time of login. Authenti-
cation of the user certificate is a complementary setup, which can rely on Apache.

Remote Auth

This method is similar to x509 auth. It performs the login to OpenNebula based on a Kerberos REMOTE_USER. The
USER@DOMAIN is extracted from REMOTE_USER variable and matched to the password value in the user database.
To use Kerberos authentication users needs to be configured with the public driver. Note that this will prevent users to
authenticate through the XML-RPC interface, only Sunstone access will be granted to these users.

To update existing users to use the Kerberos authentication change the driver to public and update the password as
follows:

$ oneuser chauth new_user public "new_user@DOMAIN"

New users with this authentication method should be created as follows:

$ oneuser create new_user "new_user@DOMAIN" --driver public

To enable this login method, set the :auth: option of /etc/one/sunstone-server.conf to remote:

5.4. User Security and Authentication 76

OpenNebula 5.2 Deployment guide, Release 5.2.1

:auth: remote

The login screen will not display the username and password fields anymore, as all information is fetched from
Kerberos server or a remote authentication service.

Note that OpenNebula will not verify that the user is holding a valid Kerberos ticket at the time of login: this is
expected to be done by the external container of the Sunstone server (normally Apache), whose job is to tell the user’s
browser that the site requires a valid ticket to login.

Warning: Sunstone remote auth method only handles the authentication of the user at the time of login. Authen-
tication of the remote ticket is a complementary setup, which can rely on Apache.

5.4.2 Configuring a SSL Proxy

OpenNebula Sunstone runs natively just on normal HTTP connections. If the extra security provided by SSL is needed,
a proxy can be set up to handle the SSL connection that forwards the petition to the Sunstone server and takes back
the answer to the client.

This set up needs:

• A server certificate for the SSL connections

• An HTTP proxy that understands SSL

• OpenNebula Sunstone configuration to accept petitions from the proxy

If you want to try out the SSL setup easily, you can find in the following lines an example to set a self-signed certificate
to be used by a web server configured to act as an HTTP proxy to a correctly configured OpenNebula Sunstone.

Let’s assume the server where the proxy is going to be started is called cloudserver.org. Therefore, the steps
are:

Step 1: Server Certificate (Snakeoil)

We are going to generate a snakeoil certificate. If using an Ubuntu system follow the next steps (otherwise your
milleage may vary, but not a lot):

• Install the ssl-cert package

apt-get install ssl-cert

• Generate the certificate

/usr/sbin/make-ssl-cert generate-default-snakeoil

• As we are using lighttpd, we need to append the private key with the certificate to obtain a server certificate valid
to lighttpd

cat /etc/ssl/private/ssl-cert-snakeoil.key /etc/ssl/certs/ssl-cert-snakeoil.pem > /
→˓etc/lighttpd/server.pem

5.4. User Security and Authentication 77

OpenNebula 5.2 Deployment guide, Release 5.2.1

Step 2: SSL HTTP Proxy

lighttpd

You will need to edit the /etc/lighttpd/lighttpd.conf configuration file and

• Add the following modules (if not present already)

– mod_access

– mod_alias

– mod_proxy

– mod_accesslog

– mod_compress

• Change the server port to 443 if you are going to run lighttpd as root, or any number above 1024 otherwise:

server.port = 8443

• Add the proxy module section:

proxy module
read proxy.txt for more info
proxy.server = ("" =>

("" =>
(
"host" => "127.0.0.1",
"port" => 9869

)
)

)

SSL engine
ssl.engine = "enable"
ssl.pemfile = "/etc/lighttpd/server.pem"

The host must be the server hostname of the computer running the Sunstone server, and the port the one that the
Sunstone Server is running on.

nginx

You will need to configure a new virtual host in nginx. Depending on the operating system and the method
of installation, nginx loads virtual host configurations from either /etc/nginx/conf.d or /etc/nginx/
sites-enabled.

• A sample cloudserver.org virtual host is presented next:

OpenNebula Sunstone upstream
upstream sunstone {

server 127.0.0.1:9869;
}

cloudserver.org HTTP virtual host
server {

listen 80;

5.4. User Security and Authentication 78

OpenNebula 5.2 Deployment guide, Release 5.2.1

server_name cloudserver.org;

Permanent redirect to HTTPS (optional)
return 301 https://$server_name:8443;

}

cloudserver.org HTTPS virtual host
server {

listen 8443;
server_name cloudserver.org;

SSL Parameters
ssl on;
ssl_certificate /etc/ssl/certs/ssl-cert-snakeoil.pem;
ssl_certificate_key /etc/ssl/private/ssl-cert-snakeoil.key;

Proxy requests to upstream
location / {

proxy_pass http://sunstone;
}

}

The IP address and port number used in upstream must be the one of the server Sunstone is running on. On typical
installations the nginx master process is run as user root so you don’t need to modify the HTTPS port.

Step 3: Sunstone Configuration

Edit /etc/one/sunstone-server.conf to listen at localhost:9869.

:host: 127.0.0.1
:port: 9869

Once the proxy server is started, OpenNebula Sunstone requests using HTTPS URIs can be directed to https:/
/cloudserver.org:8443, that will then be unencrypted, passed to localhost, port 9869, satisfied (hopefully),
encrypted again and then passed back to the client.

5.5 Cloud Servers Authentication

Todo

Mention oneflow

OpenNebula ships with two servers: Sunstone and EC2. When a user interacts with one of them, the server authenti-
cates the request and then forwards the requested operation to the OpenNebula daemon.

The forwarded requests between the servers and the core daemon include the original user name, and are signed with
the credentials of an special server user.

In this guide this request forwarding mechanism is explained, and how it is secured with a symmetric-key algorithm
or x509 certificates.

5.5. Cloud Servers Authentication 79

OpenNebula 5.2 Deployment guide, Release 5.2.1

5.5.1 Server Users

The Sunstone and EC2 services communicate with the core using a server user. OpenNebula creates the serverad-
min account at bootstrap, with the authentication driver server_cipher (symmetric key).

This server user uses a special authentication mechanism that allows the servers to perform an operation on behalf
of other user.

You can strengthen the security of the requests from the servers to the core daemon changing the serveruser’s driver to
server_x509. This is specially relevant if you are running your server in a machine other than the frontend.

Please note that you can have as many users with a server_* driver as you need. For example, you may want to have
Sunstone configured with a user with server_x509 driver, and EC2 with server_cipher.

5.5.2 Symmetric Key

Enable

This mechanism is enabled by default, you will have a user named serveradmin with driver server_cipher.

To use it, you need a user with the driver server_cipher. Enable it in the relevant configuration file in /etc/one:

• Sunstone: /etc/one/sunstone-server.conf

• EC2: /etc/one/econe.conf

:core_auth: cipher

Configure

You must update the configuration files in /var/lib/one/.one if you change the serveradmin’s password, or
create a different user with the server_cipher driver.

$ ls -1 /var/lib/one/.one
ec2_auth
sunstone_auth

$ cat /var/lib/one/.one/sunstone_auth
serveradmin:1612b78a4843647a4b541346f678f9e1b43bbcf9

Warning: serveradmin password is hashed in the database. You can use the --sha1 flag when issuing
oneuser passwd command for this user.

Warning: When Sunstone is running in a different machine than oned you should use an SSL connection. This
can be archived with an SSL proxy like stunnel or apache/nginx acting as proxy. After securing OpenNebula
XMLRPC connection configure Sunstone to use https with the proxy port:

:one_xmlrpc: https://frontend:2634/RPC2

5.5. Cloud Servers Authentication 80

OpenNebula 5.2 Deployment guide, Release 5.2.1

5.5.3 x509 Encryption

Enable

To enable it, change the authentication driver of the serveradmin user, or create a new user with the driver
server_x509:

$ oneuser chauth serveradmin server_x509
$ oneuser passwd serveradmin --x509 --cert usercert.pem

The serveradmin account should look like:

$ oneuser list

ID GROUP NAME AUTH
→˓PASSWORD

0 oneadmin oneadmin core
→˓c24783ba96a35464632a624d9f829136edc0175e

1 oneadmin serveradmin server_x /C=ES/O=ONE/OU=DEV/
→˓CN=server

You need to edit /etc/one/auth/server_x509_auth.conf and uncomment all the fields. The defaults
should work:

User to be used for x509 server authentication
:srv_user: serveradmin

Path to the certificate used by the OpenNebula Services
Certificates must be in PEM format
:one_cert: "/etc/one/auth/cert.pem"
:one_key: "/etc/one/auth/pk.pem"

Copy the certificate and the private key to the paths set in :one_cert: and :one_key:, or simply update the
paths.

Then edit the relevant configuration file in /etc/one:

• Sunstone: /etc/one/sunstone-server.conf

• EC2: /etc/one/econe.conf

:core_auth: x509

Configure

To trust the serveradmin certificate, /etc/one/auth/cert.pem if you used the default path, the CA’s certificate
must be added to the ca_dir defined in /etc/one/auth/x509_auth.conf. See the x509 Authentication
guide for more information.

$ openssl x509 -noout -hash -in cacert.pem
78d0bbd8

$ sudo cp cacert.pem /etc/one/auth/certificates/78d0bbd8.0

5.5. Cloud Servers Authentication 81

OpenNebula 5.2 Deployment guide, Release 5.2.1

5.5.4 Tuning & Extending

Files

You can find the drivers in these paths:

• /var/lib/one/remotes/auth/server_cipher/authenticate

• /var/lib/one/remotes/auth/server_server/authenticate

Authentication Session String

OpenNebula users with the driver server_cipher or server_x509 use a special authentication session string (the first
parameter of the XML-RPC calls). A regular authentication token is in the form:

username:secret

Whereas a user with a server_* driver must use this token format:

username:target_username:secret

The core daemon understands a request with this authentication session token as “perform this operation on behalf of
target_user”. The secret part of the token is signed with one of the two mechanisms explained before.

5.6 Configuring Sunstone for Large Deployments

Low to medium enterprise clouds will typically deploy Sunstone in a single machine a long with the OpenNebula
daemons. However this simple deployment can be improved by:

• Isolating the access from Web clients to the Sunstone server. This can be achieved by deploying the Sunstone
server in a separated machine.

• Improve the scalability of the server for large user pools. Usually deploying sunstone in a separate application
container in one or more hosts.

Check also the api scalability guide as these of the tips also have an impact on Sunstone performance.

5.6.1 Deploying Sunstone in a Different Machine

By default the Sunstone server is configured to run in the frontend, but you are able to install the Sunstone server in a
machine different from the frontend.

• You will need to install only the sunstone server packages in the machine that will be running the server. If you
are installing from source use the -s option for the install.sh script.

• Make sure :one_xmlprc: variable in sunstone-server.conf points to the right place where Open-
Nebula frontend is running, You can also leave it undefined and export ONE_XMLRPC environment variable.

• Provide the serveradmin credentials in the following file /var/lib/one/.one/sunstone_auth. If you
changed the serveradmin password please check the Cloud Servers Authentication guide.

• If you want to upload files to OpenNebula, you will have to share the upload directory (/var/tmp by
default) between sunstone and oned. Some server do not take into account the TMPDIR env var and this
directory must be defined in the configuration file, for example in Passenger (client_body_temp_path)

5.6. Configuring Sunstone for Large Deployments 82

OpenNebula 5.2 Deployment guide, Release 5.2.1

$ cat /var/lib/one/.one/sunstone_auth
serveradmin:1612b78a4843647a4b541346f678f9e1b43bbcf9

Using this setup the VirtualMachine logs will not be available. If you need to retrieve this information you must deploy
the server in the frontend

5.6.2 Running Sunstone Inside Another Webserver

Self contained deployment of Sunstone (using sunstone-server script) is ok for small to medium installations.
This is no longer true when the service has lots of concurrent users and the number of objects in the system is high
(for example, more than 2000 simultaneous virtual machines).

Sunstone server was modified to be able to run as a rack server. This makes it suitable to run in any web server
that supports this protocol. In ruby world this is the standard supported by most web servers. We now can select web
servers that support spawning multiple processes like unicorn or embedding the service inside apache or nginx
web servers using the Passenger module. Another benefit will be the ability to run Sunstone in several servers and
balance the load between them.

Warning: Deploying Sunstone behind a proxy in a federated environment requires some specific configuration to
properly handle the Sunstone headers required by the Federation.

• nginx: enable underscores_in_headers on; and proxy_pass_request_headers on;

Configuring memcached

When using one on these web servers the use of a memcached server is necessary. Sunstone needs to store user
sessions so it does not ask for user/password for every action. By default Sunstone is configured to use memory
sessions, that is, the sessions are stored in the process memory. Thin and webrick web servers do not spawn new
processes but new threads an all of them have access to that session pool. When using more than one process to server
Sunstone there must be a service that stores this information and can be accessed by all the processes. In this case we
will need to install memcached. It comes with most distributions and its default configuration should be ok. We will
also need to install ruby libraries to be able to access it. The rubygem library needed is memcache-client. If there
is no package for your distribution with this ruby library you can install it using rubygems:

$ sudo gem install memcache-client

Then you will have to change in sunstone configuration (/etc/one/sunstone-server.conf) the value of
:sessions to memcache.

If you want to use novcn you need to have it running. You can start this service with the command:

$ novnc-server start

Another thing you have to take into account is the user on which the server will run. The installation sets the permis-
sions for oneadmin user and group and files like the Sunstone configuration and credentials can not be read by other
users. Apache usually runs as www-data user and group so to let the server run as this user the group of these files
must be changed, for example:

$ chgrp www-data /etc/one/sunstone-server.conf
$ chgrp www-data /etc/one/sunstone-plugins.yaml
$ chgrp www-data /var/lib/one/.one/sunstone_auth
$ chmod a+x /var/lib/one
$ chmod a+x /var/lib/one/.one

5.6. Configuring Sunstone for Large Deployments 83

OpenNebula 5.2 Deployment guide, Release 5.2.1

$ chgrp www-data /var/log/one/sunstone*
$ chmod g+w /var/log/one/sunstone*

We advise to use Passenger in your installation but we will show you how to run Sunstone inside unicorn web server
as an example.

For more information on web servers that support rack and more information about it you can check the rack docu-
mentation page. You can alternatively check a list of ruby web servers.

Running Sunstone with Unicorn

To get more information about this web server you can go to its web page. It is a multi process web server that spawns
new processes to deal with requests.

The installation is done using rubygems (or with your package manager if it is available):

$ sudo gem install unicorn

In the directory where Sunstone files reside (/usr/lib/one/sunstone or /usr/share/opennebula/
sunstone) there is a file called config.ru. This file is specific for rack applications and tells how to fun
the application. To start a new server using unicorn you can run this command from that directory:

$ unicorn -p 9869

Default unicorn configuration should be ok for most installations but a configuration file can be created to tune it. For
example, to tell unicorn to spawn 4 processes and write stderr to /tmp/unicorn.log we can create a file called
unicorn.conf that contains:

worker_processes 4
logger debug
stderr_path '/tmp/unicorn.log'

and start the server and daemonize it using:

$ unicorn -d -p 9869 -c unicorn.conf

You can find more information about the configuration options in the unicorn documentation.

Running Sunstone with Passenger in Apache

Phusion Passenger is a module for Apache and Nginx web servers that runs ruby rack applications. This can be used
to run Sunstone server and will manage all its life cycle. If you are already using one of these servers or just feel
comfortable with one of them we encourage you to use this method. This kind of deployment adds better concurrency
and lets us add an https endpoint.

We will provide the instructions for Apache web server but the steps will be similar for nginx following Passenger
documentation.

First thing you have to do is install Phusion Passenger. For this you can use pre-made packages for your distribution
or follow the installation instructions from their web page. The installation is self explanatory and will guide you in
all the process, follow them an you will be ready to run Sunstone.

Next thing we have to do is configure the virtual host that will run our Sunstone server. We have to point to the
public directory from the Sunstone installation, here is an example:

5.6. Configuring Sunstone for Large Deployments 84

http://rack.rubyforge.org/doc/
http://rack.rubyforge.org/doc/
https://www.ruby-toolbox.com/categories/web_servers
http://unicorn.bogomips.org/
http://unicorn.bogomips.org/Unicorn/Configurator.html
https://www.phusionpassenger.com/
http://httpd.apache.org/
http://nginx.org/en/
https://www.phusionpassenger.com/support#documentation
https://www.phusionpassenger.com/support#documentation
https://www.phusionpassenger.com/download/#open_source

OpenNebula 5.2 Deployment guide, Release 5.2.1

<VirtualHost *:80>
ServerName sunstone-server
PassengerUser oneadmin
!!! Be sure to point DocumentRoot to 'public'!
DocumentRoot /usr/lib/one/sunstone/public
<Directory /usr/lib/one/sunstone/public>

This relaxes Apache security settings.
AllowOverride all
MultiViews must be turned off.
Options -MultiViews
Uncomment this if you're on Apache >= 2.4:
#Require all granted

</Directory>
</VirtualHost>

Note: When you’re experiencing login problems you might want to set PassengerMaxInstancesPerApp 1
in your passenger configuration or try memcached since Sunstone does not support sessions across multiple server
instances.

Now the configuration should be ready, restart -or reload apache configuration- to start the application and point to the
virtual host to check if everything is running.

Running Sunstone behind nginx SSL Proxy

How to set things up with nginx ssl proxy for sunstone and encrypted vnc.

No squealing.
server_tokens off;

OpenNebula Sunstone upstream
upstream sunstone {

server 127.0.0.1:9869;
}

HTTP virtual host, redirect to HTTPS
server {

listen 80 default_server;
return 301 https://$server_name:443;

}

HTTPS virtual host, proxy to Sunstone
server {

listen 443 ssl default_server;
ssl_certificate /etc/ssl/certs/opennebula-certchain.pem;
ssl_certificate_key /etc/ssl/private/opennebula-key.pem;
ssl_stapling on;

}

And this is the changes that have to be made to sunstone-server.conf:

UI Settings

:vnc_proxy_port: 29876
:vnc_proxy_support_wss: only
:vnc_proxy_cert: /etc/one/ssl/opennebula-certchain.pem

5.6. Configuring Sunstone for Large Deployments 85

OpenNebula 5.2 Deployment guide, Release 5.2.1

:vnc_proxy_key: /etc/one/ssl/opennebula-key.pem
:vnc_proxy_ipv6: false

If using a selfsigned cert, the connection to VNC window in Sunstone will fail, either get a real cert, or manually accept
the selfsigned cert in your browser before trying it with Sunstone. Now, VNC sessions should show “encrypted” in
the title. You will need to have your browser trust that certificate, in both 443 and 29876 ports in the OpenNebula IP
or FQDN.

Running Sunstone with Passenger using FreeIPA/Kerberos auth in Apache

It is also possible to use Sunstone remote authentication with Apache and Passenger. The configuration in this case
is quite similar to Passenger configuration but we must include the Apache auth module line. How to configure freeIPA
server and Kerberos is outside of the scope of this document, you can get more info in FreeIPA Apache setup example

As example to include Kerberos authentication we can use two different modules: mod_auth_gssapi or
mod_authnz_pam And generate the keytab for http service, here is an example with Passenger:

LoadModule auth_gssapi_module modules/mod_auth_gssapi.so

<VirtualHost *:80>
ServerName sunstone-server
PassengerUser oneadmin
!!! Be sure to point DocumentRoot to 'public'!
DocumentRoot /usr/lib/one/sunstone/public
<Directory /usr/lib/one/sunstone/public>

Only is possible to access to this dir using a valid ticket
AuthType GSSAPI
AuthName "EXAMPLE.COM login"
GssapiCredStore keytab:/etc/http.keytab
Require valid-user
ErrorDocument 401 '<html><meta http-equiv="refresh" content="0; URL=https://

→˓yourdomain"><body>Kerberos authentication did not pass.</body></html>'
AllowOverride all
MultiViews must be turned off.
Options -MultiViews

</Directory>
</VirtualHost>

Note: User must generate a valid ticket running kinit to get acces to Sunstone service. You can also set a custom
401 document to warn users about any authentication failure.

Now our configuration is ready to use Passenger and Kerberos, restart -or reload apache configuration- and point to
the virtual host using a valid ticket to check if everything is running.

Running Sunstone in Multiple Servers

You can run Sunstone in several servers and use a load balancer that connects to them. Make sure you are using
memcache for sessions and both Sunstone servers connect to the same memcached server. To do this change the
parameter :memcache_host in the configuration file. Also make sure that both Sunstone instances connect to the
same OpenNebula server.

5.6. Configuring Sunstone for Large Deployments 86

http://www.freeipa.org/page/Web_App_Authentication/Example_setup

OpenNebula 5.2 Deployment guide, Release 5.2.1

MarketPlace

If you plan on using the MarketPlaceApp download functionality the Sunstone server(s) will need access to the Mar-
ketPlace backends.

If you are using Phusion Passenger, take the following recommendations into account:

• Set PassengerResponseBufferHighWatermark to 0.

• Increase PassengerMaxPoolSize. Each MarketPlaceApp download will take one of this application processes.

• If Passenger Enterprise is available, set PassengerConcurrencyModel to thread.

If you are using another backend than Passenger, please port these recommendations to your backend.

5.6. Configuring Sunstone for Large Deployments 87

https://www.phusionpassenger.com/
https://www.phusionpassenger.com/library/config/apache/reference/#passengerresponsebufferhighwatermark
https://www.phusionpassenger.com/library/config/apache/reference/#passengermaxpoolsize
https://www.phusionpassenger.com/enterprise
https://www.phusionpassenger.com/library/config/apache/reference/#passengerconcurrencymodel

CHAPTER

SIX

VMWARE INFRASTRUCTURE SETUP

6.1 Overview

After configuring the OpenNebula front-end and the vCenter nodes, the next step is to learn what capabilities can be
leveraged from the vCenter infrastructure and fine tune the OpenNebula cloud to make use of them.

The Virtualization Subsystem is the component in charge of talking with the hypervisor and taking the actions needed
for each step in the VM life-cycle. This Chapter gives a detailed view of the vCenter drivers, the resources it manages
and how to setup OpenNebula to leverage different vCenter features.

6.1.1 How Should I Read This Chapter

You should be reading this chapter after performing the vCenter node install.

This Chapter is organized in the vCenter Node Section, which introduces the vCenter integration approach under
the point of view of OpenNebula, with description of how to import, create and use VM Templates, resource pools,
limitations and so on; the Networking Setup Section section that glosses over the network consumption and usage
and then the Datastore Setup Section which introduces the concepts of OpenNebula datastores as related to vCenter
datastores, and the VMDK image management made by OpenNebula.

After reading this Chapter, you can delve on advanced topics like OpenNebula upgrade, logging, scalability in the
Reference Chapter. The next step should be proceeding to the Operations guide to learn how the Cloud users can
consume the cloud resources that have been set up.

6.1.2 Hypervisor Compatibility

All this Chapter applies exclusively to vCenter hypervisor.

6.2 vCenter Node

The vCenter driver for OpenNebula enables the interaction with vCenter to control the life-cycle of vCenter resources
such as Virtual Machines, Templates, Networks and VMDKs.

6.2.1 OpenNebula approach to vCenter interaction

OpenNebula consumes resources from vCenter, and with exceptions (VMs and VMDKs) does not create these re-
sources, but rather offers mechanisms to import them into OpenNebula to be controlled.

88

OpenNebula 5.2 Deployment guide, Release 5.2.1

Virtual Machines are deployed from VMware VM Templates that must exist previously in vCenter. There is a one-
to-one relationship between each VMware VM Template and the equivalent OpenNebula Template. Users will then
instantiate the OpenNebula Templates where you can easily build from any provisioning strategy (e.g. access control,
quota...).

Networking is handled by creating Virtual Network representations of the vCenter networks. OpenNebula additionally
can handle on top of these networks three types of Address Ranges: Ethernet, IPv4 and IPv6. This networking
information can be passed to the VMs through the contextualization process.

Therefore there is no need to convert your current Virtual Machines or import/export them through any process; once
ready just save them as VM Templates in vCenter, following this procedure.

There are different behavior of the vCenter resources when deleted in OpenNebula. The following resources are NOT
deleted in vCenter when deleted in OpenNebula:

• VM Templates

• Networks

• Datastores

The following resource are deleted in vCenter when deleted in OpenNebula:

• Images

• Virtual Machines

Note: After a VM Template is cloned and booted into a vCenter Cluster it can access VMware advanced features
and it can be managed through the OpenNebula provisioning portal -to control the life-cycle, add/remove NICs, make
snapshots- or through vCenter (e.g. to move the VM to another datastore or migrate it to another ESX). OpenNebula
will poll vCenter to detect these changes and update its internal representation accordingly.

6.2.2 Considerations & Limitations

• Unsupported Operations: The following operations are NOT supported on vCenter VMs managed by Open-
Nebula, although they can be performed through vCenter:

Operation Note
migrate VMs cannot be migrated between ESX clusters
disk snapshots Only system snapshots are available for vCenter VMs

• No Security Groups: Firewall rules as defined in Security Groups cannot be enforced in vCenter VMs.

• OpenNebula treats snapshots a tad different than VMware. OpenNebula assumes that they are independent,
whereas VMware builds them incrementally. This means that OpenNebula will still present snapshots that are
no longer valid if one of their parent snapshots are deleted, and thus revert operations applied upon them will
fail.

• No files in context: Passing entire files to VMs is not supported, but all the other CONTEXT sections will be
honored.

• Cluster names cannot contain spaces.

• Image names cannot contain spaces.

• Datastore names cannot contain spaces.

• vCenter credential password cannot have more than 22 characters.

6.2. vCenter Node 89

http://pubs.vmware.com/vsphere-55/index.jsp?topic=%2Fcom.vmware.vsphere.vm_admin.doc%2FGUID-FE6DE4DF-FAD0-4BB0-A1FD-AFE9A40F4BFE_copy.html

OpenNebula 5.2 Deployment guide, Release 5.2.1

• If you are running Sunstone using nginx/apache you will have to forward the following headers to
be able to interact with vCenter, HTTP_X_VCENTER_USER, HTTP_X_VCENTER_PASSWORD and
HTTP_X_VCENTER_HOST (or, alternatively, X_VCENTER_USER, X_VCENTER_PASSWORD and
X_VCENTER_HOST). For example in nginx you have to add the following attrs to the server section of your
nginx file: (underscores_in_headers on; proxy_pass_request_headers on;).

• Attaching a new CDROM ISO will add a new (or change the existing) ISO to an already existing CDROM drive
that needs to be present in the VM.

6.2.3 Configuring

The vCenter virtualization driver configuration file is located in /etc/one/vmm_exec/vmm_exec_vcenter.
conf. This file is home for default values for OpenNebula VM templates.

It is generally a good idea to place defaults for the vCenter-specific attributes, that is, attributes mandatory in the
vCenter driver that are not mandatory for other hypervisors. Non mandatory attributes for vCenter but specific to them
are also recommended to have a default.

6.2.4 Importing vCenter VM Templates and running VMs

The onevcenter tool can be used to import existing VM templates from the ESX clusters:

$ onevcenter templates --vcenter <vcenter-host> --vuser <vcenter-username> --vpass
→˓<vcenter-password>

Connecting to vCenter: <vcenter-host>...done!

Looking for VM Templates...done!

Do you want to process datacenter Development [y/n]? y

* VM Template found:
- Name : ttyTemplate
- UUID : 421649f3-92d4-49b0-8b3e-358abd18b7dc
- Cluster: clusterA

Import this VM template [y/n]? y
OpenNebula template 4 created!

* VM Template found:
- Name : Template test
- UUID : 4216d5af-7c51-914c-33af-1747667c1019
- Cluster: clusterB

Import this VM template [y/n]? y
OpenNebula template 5 created!

$ onetemplate list
ID USER GROUP NAME REGTIME
4 oneadmin oneadmin ttyTemplate 09/22 11:54:33
5 oneadmin oneadmin Template test 09/22 11:54:35

$ onetemplate show 5
TEMPLATE 5 INFORMATION
ID : 5
NAME : Template test
USER : oneadmin
GROUP : oneadmin

6.2. vCenter Node 90

OpenNebula 5.2 Deployment guide, Release 5.2.1

REGISTER TIME : 09/22 11:54:35

PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---

TEMPLATE CONTENTS
CPU="1"
MEMORY="512"
PUBLIC_CLOUD=[

TYPE="vcenter",
VM_TEMPLATE="4216d5af-7c51-914c-33af-1747667c1019"]

SCHED_REQUIREMENTS="NAME=\"devel\""
VCPU="1"

After a vCenter VM Template is imported as a OpenNebula VM Template, it can be modified to change the capacity
in terms of CPU and MEMORY, the name, permissions, etc. It can also be enriched to add:

• New disks

• New network interfaces

• Context information

Before using your OpenNebula cloud you may want to read about the vCenter specifics.

To import existing VMs, the ‘onehost importvm’ command can be used. VMs in running state can be imported, and
also VMs defined in vCenter that are not in power.on state (this will import the VMs in OpenNebula as in the poweroff
state).

$ onehost show 0
HOST 0 INFORMATION
ID : 0
NAME : MyvCenterHost
CLUSTER : -
[....]

WILD VIRTUAL MACHINES

NAME IMPORT_ID CPU MEMORY
RunningVM 4223cbb1-34a3-6a58-5ec7-a55db235ac64 1 1024

[....]

$ onehost importvm 0 RunningVM
$ onevm list
ID USER GROUP NAME STAT UCPU UMEM HOST TIME
3 oneadmin oneadmin RunningVM runn 0 590M MyvCenterHost 0d 01h02

After a Virtual Machine is imported, their life-cycle (including creation of snapshots) can be controlled through Open-
Nebula. The following operations cannot be performed on an imported VM:

• Recover –recreate

• Undeploy (and Undeploy –hard)

• Migrate (and Migrate –live)

• Stop

6.2. vCenter Node 91

OpenNebula 5.2 Deployment guide, Release 5.2.1

Running VMs with open VNC ports are imported with the ability to establish VNC connection to them via OpenNeb-
ula. To activate the VNC ports, you need to right click on the VM in vCenter while it is shut down and click on “Edit
Settings”, and set the following remotedisplay.* settings:

• remotedisplay.vnc.enabled must be set to TRUE.

• remotedisplay.vnc.ip must be set to 0.0.0.0 (or alternatively, the IP of the OpenNebula front-end).

• remotedisplay.vnc.port must be set to a available VNC port number.

Also, network management operations are present like the ability to attach/detach network interfaces, as well as
capacity (CPU and MEMORY) resizing operations and VNC connections if the ports are opened before hand. The
same import mechanism is available graphically through Sunstone for hosts, networks, templates and running VMs.

vCenter hosts can be imported using the vCenter host create dialog.

Networks and VM Templates can be imported through the Import button in the Networks -> Virtual Networks and
Templates -> VM menu entries respectively.

Note: The Import button will be available once the one_vcenter view is enabled in Sunstone. To do so, click on
your user’s name (Sunstone’s top-right). A drop-down menu will be shown. Then click on views and finally click on
admin_vcenter.

Running and Powered Off VMs can be imported through the WILDS tab in the Host info tab.

6.2. vCenter Node 92

OpenNebula 5.2 Deployment guide, Release 5.2.1

Note: Running VMS can only be imported after the vCenter host has been successfully acquired.

6.2.5 Resource Pool

OpenNebula can place VMs in different Resource Pools. There are two approaches to achieve this, fixed per Cluster
basis or flexible per VM Template basis.

In the fixed per Cluster basis approach, the vCenter credentials that OpenNebula use can be confined into a Resource
Pool, to allow only a fraction of the vCenter infrastructure to be used by OpenNebula users. The steps to confine
OpenNebula users into a Resource Pool are:

• Create a new vCenter user

• Create a Resource Pool in vCenter and assign the subset of Datacenter hardware resources wanted to be exposed
through OpenNebula

• Give vCenter user Resource Pool Administration rights over the Resource Pool

• Give vCenter user Resource Pool Administration (or equivalent) over the Datastores the VMs are going to be
running on

Afterwards, these credentials can be used to add to OpenNebula the host representing the vCenter cluster. Add a new
tag called VCENTER_RESOURCE_POOL to the host template representing the vCenter cluster (for instance, in the
info tab of the host, or in the CLI), with the name of the Resource Pool.

The second approach is more flexible in the sense that all Resource Pools defined in vCenter can be used, and the
mechanism to select which one the VM is going to reside into can be defined using the attribute RESOURCE_POOL

6.2. vCenter Node 93

OpenNebula 5.2 Deployment guide, Release 5.2.1

in the OpenNebula VM Template:

Nested Resource Pools can be represented using ‘/’. For instance, a Resource Pool “RPChild” nested under “RPAnces-
tor” can be represented both in VCENTER_RESOURCE_POOL and RESOURCE_POOL attributes as “RPAnces-
tor/RPChild”.

RESOURCE_POOL="RPAncestor/RPChild"
PUBLIC_CLOUD=[

HOST="Cluster",
TYPE="vcenter",
VM_TEMPLATE="4223067b-ed9b-8f73-82ba-b1a98c3ff96e"]

6.3 vCenter Datastore

The vCenter datastore allows the representation in OpenNebula of VMDK images available in vCenter datastores. It
is a persistent only datastore, meaning that VMDK images are not cloned automatically by OpenNebula when a VM
is instantiated. vCenter handles the VMDK image copies, so no system datastore is needed in OpenNebula, and only
vCenter image datastores are allowed.

No system datastore is needed since the vCenter support in OpenNebula does not rely on transfer managers to copy
VMDK images, but rather this is delegated to vCenter. When a VM Template is instantiated, vCenter performs the
VMDK copies, and deletes them after the VM ends its life-cycle. The OpenNebula vCenter datastore is a purely
persistent images datastore to allow for VMDK cloning and enable disk attach/detach on running VMs.

The vCenter datastore in OpenNebula is tied to a vCenter OpenNebula host in the sense that all operations to be
performed in the datastore are going to be performed through the vCenter instance associated to the OpenNebula host,
which happens to hold the needed credentials to access the vCenter instance.

Creation of empty datablocks and VMDK image cloning are supported, as well as image deletion.

6.3.1 Limitations

• No support for snapshots in the vCenter datastore.

• Only one disk is allowed per directory in the vCenter datastores.

• Datastore names cannot contain spaces.

• Image names and paths cannot contain spaces.

6.3.2 Requirements

In order to use the vCenter datastore, the following requirements need to be met:

• All the ESX servers controlled by vCenter need to mount the same VMFS datastore with the same name.

• The ESX servers need to be part of the Cluster controlled by OpenNebula

6.3.3 Configuration

In order to create a OpenNebula vCenter datastore that represents a vCenter VMFS datastore, a new OpenNebula
datastore needs to be created with the following attributes:

• The OpenNebula vCenter datastore name needs to be exactly the same as the vCenter VMFS datastore available
in the ESX hosts.

6.3. vCenter Datastore 94

OpenNebula 5.2 Deployment guide, Release 5.2.1

• The specific attributes for this datastore driver are listed in the following table:

Attribute Description
DS_MAD Must be set to vcenter
TM_MAD Must be set vcenter
VCENTER_CLUSTERName of the OpenNebula host that represents the vCenter cluster that groups the ESX hosts that

mount the represented VMFS datastore
ADAPTER_TYPEDefault adapter type used by virtual disks to plug inherited to VMs for the images in the datastore. It

is inherited by images and can be overwritten if specified explicitly in the image. Possible values
(careful with the case): lsiLogic, ide, busLogic. More information in the VMware documentation.
Known as “Bus adapter controller” in Sunstone.

DISK_TYPEType of disk to be created when a DATABLOCK is requested. This value is inherited from the
datastore to the image but can be explicitly overwritten. The type of disk has implications on
performance and occupied space. Values (careful with the case):
delta,eagerZeroedThick,flatMonolithic,preallocated,raw,rdm,rdmp,seSparse,sparse2Gb,sparseMonolithic,thick,thick2Gb,thin.
More information in the VMware documentation. Known as “Disk Provisioning Type” in Sunstone.

vCenter datastores can be represented in OpenNebula to achieve the following VM operations:

• Choose a different datastore for VM deployment

• Clone VMDKs images

• Create empty datablocks

• Delete VMDK images

All OpenNebula datastores are actively monitoring, and the scheduler will refuse to deploy a VM onto a vCenter
datastore with insufficient free space.

The onevcenter tool can be used to import vCenter datastores:

$ onevcenter datastores --vuser <VCENTER_USER> --vpass <VCENTER_PASS> --vcenter
→˓<VCENTER_FQDN>

Connecting to vCenter: vcenter.vcenter3...done!

Looking for Datastores...done!

Do you want to process datacenter Datacenter [y/n]? y

* Datastore found:
- Name : datastore2
- Total MB : 132352
- Free MB : 130605
- Cluster : Cluster

Import this Datastore [y/n]? y
OpenNebula datastore 100 created!

6.3.4 Storage DRS and datastore cluster

Storage DRS allows you to manage the aggregated resources of a datastore cluster. A StoragePod data object aggre-
gates the storage resources of associated Datastores in a datastore cluster managed by Storage DRS.

In OpenNebula, a StoragePod can be imported as a datastore using Sunstone or CLI’s onevcenter datastore command.
The StoragePod will be imported as a SYSTEM datastore so it won’t be possible to use it to store images but it will
be possible to deploy VMs on it.

6.3. vCenter Datastore 95

http://pubs.vmware.com/vsphere-60/index.jsp#com.vmware.wssdk.apiref.doc/vim.VirtualDiskManager.VirtualDiskAdapterType.html
http://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.wssdk.apiref.doc%2Fvim.VirtualDiskManager.VirtualDiskType.html

OpenNebula 5.2 Deployment guide, Release 5.2.1

Datastores which are member of the cluster, represented by the StoragePod, can be imported as individual IMAGE
datastores where VMs can be deployed and images can be stored.

Current support has the following limitations:

• Images in StoragePods can’t be imported through Sunstone or CLI’s onevcenter command though it’s possible
to import them from a datastore, which is a member of a storage cluster, if it has been imported previously as an
individual datastore.

• New images like VMDK files cannot be created or uploaded to the StoragePod as it’s set as a SYSTEM datastore.
However, it’s possible to create an image and upload it to a datastore which is a member of a storage cluster it
has been imported previously as an individual datastore.

Warning: When a VM is deployed, a cloning operation is involved. The moveAllDisksBackingsAndDisallow-
Sharing move type is used when target datastore is a StoragePod. According to VMWare’s documentation all of
the virtual disk’s backings should be moved to the new datastore. It is not acceptable to attach to a disk backing
with the same content ID on the destination datastore. During a clone operation any delta disk backings will be
consolidated. The moveChildMostDiskBacking is used for datastores which are not StoragePods in the cloning
operation.

Warning: If you import a StorageDRS cluster you must edit /etc/one/oned.conf and add vcenter the -s argument
list in the DATASTORE_MAD section so the StorageDRS cluster can be monitored as a SYSTEM datastore:

DATASTORE_MAD = [
EXECUTABLE = "one_datastore",
ARGUMENTS = "-t 15 -d dummy,fs,lvm,ceph,dev,iscsi_libvirt,vcenter -s shared,ssh,

→˓ceph,fs_lvm,qcow2,vcenter"
]

6.3.5 Tuning and Extending

Drivers can be easily customized please refer to the specific guide for each datastore driver or to the Storage subsystem
developer’s guide.

However you may find the files you need to modify here:

• /var/lib/one/remotes/datastore/vcenter

• /var/lib/one/remotes/tm/vcenter

6.4 vCenter Networking

Virtual Networks from vCenter can be represented using OpenNebula networks, taking into account that the BRIDGE
of the Virtual Network needs to match the name of the Network defined in vCenter. OpenNebula supports both “Port
Groups” and “Distributed Port Groups”, and as such can consume any vCenter defined network resource (even those
created by other networking components like for instance NSX).

Virtual Networks in vCenter can be created using the vCenter web client, with any specific configuration like for
instance VLANs. OpenNebula will use these networks with the defined characteristics, but it cannot create new Virtual
Networks in vCenter, but rather only OpenNebula representations of such Virtual Networks. OpenNebula additionally
can handle on top of these networks three types of Address Ranges: Ethernet, IPv4 and IPv6.

6.4. vCenter Networking 96

OpenNebula 5.2 Deployment guide, Release 5.2.1

vCenter VM Templates can define their own NICs, and OpenNebula will not manage them. However, any NIC added
in the OpenNebula VM Template, or through the attach_nic operation, will be handled by OpenNebula, and as such it
is subject to be detached and its information (IP, MAC, etc) is known by OpenNebula.

vCenter VM Templates with already defined NICs that reference Networks in vCenter will be imported without this
information in OpenNebula. These NICs will be invisible for OpenNebula, and therefore cannot be detached from
the VMs. The imported VM Templates in OpenNebula can be updated to add NICs from Virtual Networks imported
from vCenter (being Networks or Distributed vSwitches). We recommend therefore to use VM Templates in vCenter
without defined NICs, to add them later on in the OpenNebula VM Templates

6.4.1 Importing vCenter Networks

The onevcenter tool can be used to import existing Networks and distributed vSwitches from the ESX clusters:

$ onevcenter networks --vcenter <vcenter-host> --vuser <vcenter-username> --vpass
→˓<vcenter-password>

Connecting to vCenter: <vcenter-host>...done!

Looking for vCenter networks...done!

Do you want to process datacenter vOneDatacenter [y/n]? y

* Network found:
- Name : MyvCenterNetwork
- Type : Port Group

Import this Network [y/n]? y
How many VMs are you planning to fit into this network [255]? 45
What type of Virtual Network do you want to create (IPv[4],IPv[6],[E]thernet) ? E
Please input the first MAC in the range [Enter for default]:
OpenNebula virtual network 29 created with size 45!

$ onevnet list
ID USER GROUP NAME CLUSTER BRIDGE LEASES
29 oneadmin oneadmin MyvCenterNetwork - MyFakeNe 0

$ onevnet show 29
VIRTUAL NETWORK 29 INFORMATION
ID : 29
NAME : MyvCenterNetwork
USER : oneadmin
GROUP : oneadmin
CLUSTER : -
BRIDGE : MyvCenterNetwork
VLAN : No
USED LEASES : 0

PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---

VIRTUAL NETWORK TEMPLATE
BRIDGE="MyvCenterNetwork"
PHYDEV=""
VCENTER_TYPE="Port Group"
VLAN="NO"

6.4. vCenter Networking 97

OpenNebula 5.2 Deployment guide, Release 5.2.1

VLAN_ID=""

ADDRESS RANGE POOL
AR TYPE SIZE LEASES MAC IP GLOBAL_PREFIX
0 ETHER 45 0 02:00:97:7f:f0:87 - -

LEASES
AR OWNER MAC IP IP6_GLOBAL

The same import mechanism is available graphically through Sunstone

6.4.2 Network monitoring

OpenNebula gathers network monitoring info for each VM. Real-time data is retrieved from vCenter thanks to the
Performance Manager which collects data every 20 seconds and maintains it for one hour. Real-time samples are used
so no changes have to be applied to vCenter’s Statistics setings. Network metrics for transmitted and received traffic
are provided as an average using KB/s unit.

The graphs provided by Sunstone are different from those found in vCenter under the Monitor -> Performance Tab
when selecting Realtime in the Time Range drop-down menu or in the Advanced view selecting the Network View.
The reason is that Sunstone uses polling time as time reference while vCenter uses sample time on their graphs, so
an approximation to the real values aggregating vCenter’s samples between polls is needed. As a result, upload and
download peaks will be different in value and different peaks between polls won’t be depicted. Sunstone’s graphs will
provide a useful information about networking behaviour which can be examined on vCenter later with greater detail.

6.4. vCenter Networking 98

CHAPTER

SEVEN

OPEN CLOUD HOST SETUP

7.1 Overview

The Hosts are servers with a hypervisor installed (KVM) which execute the running Virtual Machines. These Hosts
are managed by the KVM Driver, which will perform the actions needed to manage the VM and its life-cycle. This
chapter analyses the KVM driver in detail, and will give you, amongst other things, the tools to configure and add
KVM hosts into the OpenNebula Cloud.

7.1.1 How Should I Read This Chapter

Before reading this chapter, you should have already installed your Frontend, the KVM Hosts and have an OpenNebula
cloud up and running with at least one virtualization node.

This chapter will focus on the configuration options for the Hosts.

• Read the KVM driver section in order to understand the procedure of configuring and managing kvm Hosts.

• In the Monitoring section, you can find information about how OpenNebula is monitoring its Hosts and Virtual
Machines, and changes you can make in the configuration of that subsystem.

• You can read this section if you are interested in performing PCI Passthrough.

After reading this chapter, you should read the Open Cloud Storage chapter.

7.1.2 Hypervisor Compatibility

This chapter applies only to KVM.

Follow the vCenter Node section for a similar guide for vCenter.

7.2 KVM Driver

KVM (Kernel-based Virtual Machine) is the hypervisor for OpenNebula’s Open Cloud Architecture. KVM is a com-
plete virtualization system for Linux. It offers full virtualization, where each Virtual Machine interacts with its own
virtualized hardware. This guide describes the use of the KVM with OpenNebula.

99

http://www.linux-kvm.org/

OpenNebula 5.2 Deployment guide, Release 5.2.1

7.2.1 Requirements

The Hosts will need a CPU with Intel VT or AMD’s AMD-V features, in order to support virtualization. KVM’s
Preparing to use KVM guide will clarify any doubts you may have regarding if your hardware supports KVM.

KVM will be installed and configured after following the KVM Host Installation section.

7.2.2 Considerations & Limitations

Try to use virtio whenever possible, both for networks and disks. Using emulated hardware, both for networks and
disks, will have an impact in performance and will not expose all the available functionality. For instance, if you don’t
use virtio for the disk drivers, you will not be able to exceed a small number of devices connected to the controller,
meaning that you have a limit when attaching disks, and it will not work while the VM is running (live disk-attach).

7.2.3 Configuration

KVM Configuration

The OpenNebula packages will configure KVM automatically, therefore you don’t need to take any extra steps.

Drivers

The KVM driver is enabled by default in OpenNebula:

#---
KVM Virtualization Driver Manager Configuration
-r number of retries when monitoring a host
-t number of threads, i.e. number of hosts monitored at the same time
-l <actions[=command_name]> actions executed locally, command can be
overridden for each action.
Valid actions: deploy, shutdown, cancel, save, restore, migrate, poll
An example: "-l migrate=migrate_local,save"
-p more than one action per host in parallel, needs support from hypervisor
-s <shell> to execute remote commands, bash by default
#
Note: You can use type = "qemu" to use qemu emulated guests, e.g. if your
CPU does not have virtualization extensions or use nested Qemu-KVM hosts
#---
VM_MAD = [

NAME = "kvm",
SUNSTONE_NAME = "KVM",
EXECUTABLE = "one_vmm_exec",
ARGUMENTS = "-t 15 -r 0 kvm",
DEFAULT = "vmm_exec/vmm_exec_kvm.conf",
TYPE = "kvm",
KEEP_SNAPSHOTS= "no",
IMPORTED_VMS_ACTIONS = "terminate, terminate-hard, hold, release, suspend,

resume, delete, reboot, reboot-hard, resched, unresched, disk-attach,
disk-detach, nic-attach, nic-detach, snap-create, snap-delete"

]

The configuration parameters: -r, -t, -l, -p and -s are already preconfigured with sane defaults. If you change
them you will need to restart OpenNebula.

7.2. KVM Driver 100

http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
http://www.amd.com/en-us/solutions/servers/virtualization
http://www.linux-kvm.org/page/FAQ#Preparing_to_use_KVM

OpenNebula 5.2 Deployment guide, Release 5.2.1

Read the Virtual Machine Drivers Reference for more information about these parameters, and how to customize and
extend the drivers.

Driver Defaults

There are some attributes required for KVM to boot a VM. You can set a suitable defaults for them so, all the VMs get
needed values. These attributes are set in /etc/one/vmm_exec/vmm_exec_kvm.conf. The following can be
set for KVM:

• EMULATOR: path to the kvm executable.

• OS: attributes KERNEL, INITRD, BOOT, ROOT, KERNEL_CMD, MACHINE and ARCH.

• VCPU

• FEATURES: attributes ACPI, PAE.

• DISK: attributes DRIVER and CACHE. All disks will use that driver and caching algorithm.

• NIC: attribute FILTER.

• RAW: to add libvirt attributes to the domain XML file.

• HYPERV: to enable hyperv extensions.

• SPICE: to add default devices for SPICE.

For example:

OS = [ARCH = "x86_64"]
FEATURES = [PAE = "no", ACPI = "yes", APIC = "no", HYPERV = "no", GUEST_AGENT = "no"
→˓]
DISK = [DRIVER = "raw" , CACHE = "none"]
HYPERV_OPTIONS="<relaxed state='on'/><vapic state='on'/><spinlocks state='on' retries=
→˓'4096'/>"
SPICE_OPTIONS="

<video>
<model type='qxl' heads='1'/>

</video>
<sound model='ich6' />

<channel type='spicevmc'>
<target type='virtio' name='com.redhat.spice.0'/>

</channel>
<redirdev bus='usb' type='spicevmc'/>
<redirdev bus='usb' type='spicevmc'/>
<redirdev bus='usb' type='spicevmc'/>"

Note: These values can be overriden in the VM Template

Live-Migration for Other Cache settings

In case you are using disks with a cache setting different to none you may have problems with live migration de-
pending on the libvirt version. You can enable the migration adding the --unsafe parameter to the virsh command.
The file to change is /var/lib/one/remotes/vmm/kvm/kvmrc. Uncomment the following line, and execute
onehost sync --force afterwards:

7.2. KVM Driver 101

OpenNebula 5.2 Deployment guide, Release 5.2.1

MIGRATE_OPTIONS=--unsafe

Configure the Timeouts (Optional)

Optionally, you can set a timeout for the VM Shutdown operation can be set up. This feature is useful when a VM gets
stuck in Shutdown (or simply does not notice the shutdown command). By default, after the timeout time the VM will
return to Running state but is can also be configured so the VM is destroyed after the grace time. This is configured in
/var/lib/one/remotes/vmm/kvm/kvmrc:

Seconds to wait after shutdown until timeout
export SHUTDOWN_TIMEOUT=300

Uncomment this line to force VM cancellation after shutdown timeout
#export FORCE_DESTROY=yes

Working with cgroups (Optional)

Warning: This section outlines the configuration and use of cgroups with OpenNebula and libvirt/KVM. Please
refer to the cgroups documentation of your Linux distribution for specific details.

Cgroups is a kernel feature that allows you to control the amount of resources allocated to a given process (among
other things). This feature can be used to enforce the amount of CPU assigned to a VM, as defined in its template. So,
thanks to cgroups a VM with CPU=0.5 will get half of the physical CPU cycles than a VM with CPU=1.0.

Cgroups can be also used to limit the overall amount of physical RAM that the VMs can use, so you can leave always
a fraction to the host OS.

The following outlines the steps need to configure cgroups, this should be performed in the hosts, not in the front-
end:

• Define where to mount the cgroup controller virtual file systems, at least memory and cpu are needed.

• (Optional) You may want to limit the total memory devoted to VMs. Create a group for the libvirt processes
(VMs) and the total memory you want to assign to them. Be sure to assign libvirt processes to this group, e.g.
wih CGROUP_DAEMON or in cgrules.conf. Example:

/etc/cgconfig.conf

group virt {
memory {

memory.limit_in_bytes = 5120M;
}

}

mount {
cpu = /mnt/cgroups/cpu;
memory = /mnt/cgroups/memory;
cpuset = /mnt/cgroups/cpuset;
devices = /mnt/cgroups/devices;
blkio = /mnt/cgroups/blkio;
cpuacct = /mnt/cgroups/cpuacct;

}

7.2. KVM Driver 102

OpenNebula 5.2 Deployment guide, Release 5.2.1

/etc/cgrules.conf

*:libvirtd memory virt/

• Enable cgroups support in libvirt by adding this configuration to /etc/libvirt/qemu.conf:

/etc/libvirt/qemu.conf

cgroup_controllers = ["cpu", "devices", "memory", "blkio", "cpuset", "cpuacct"]
cgroup_device_acl = [

"/dev/null", "/dev/full", "/dev/zero",
"/dev/random", "/dev/urandom",
"/dev/ptmx", "/dev/kvm", "/dev/kqemu",
"/dev/rtc","/dev/hpet", "/dev/vfio/vfio"

]

• After configuring the hosts start/restart the cgroups service then restart the libvirtd service.

• (Optional) If you have limited the amount of memory for VMs, you may want to set RESERVED_MEM parameter
in host or cluster templates.

That’s it. OpenNebula automatically generates a number of CPU shares proportional to the CPU attribute in the VM
template. For example, consider a host running 2 VMs (73 and 74, with CPU=0.5 and CPU=1) respectively. If
everything is properly configured you should see:

/mnt/cgroups/cpu/sysdefault/libvirt/qemu/
|-- cgroup.event_control
...
|-- cpu.shares
|-- cpu.stat
|-- notify_on_release
|-- one-73
| |-- cgroup.clone_children
| |-- cgroup.event_control
| |-- cgroup.procs
| |-- cpu.shares
| ...
| `-- vcpu0
| |-- cgroup.clone_children
| ...
|-- one-74
| |-- cgroup.clone_children
| |-- cgroup.event_control
| |-- cgroup.procs
| |-- cpu.shares
| ...
| `-- vcpu0
| |-- cgroup.clone_children
| ...
`-- tasks

and the cpu shares for each VM:

> cat /mnt/cgroups/cpu/sysdefault/libvirt/qemu/one-73/cpu.shares
512
> cat /mnt/cgroups/cpu/sysdefault/libvirt/qemu/one-74/cpu.shares
1024

7.2. KVM Driver 103

OpenNebula 5.2 Deployment guide, Release 5.2.1

VCPUs are not pinned so most probably the virtual process will be changing the core it is using. In an ideal case where
the VM is alone in the physical host the total amount of CPU consumed will be equal to VCPU plus any overhead of
virtualization (for example networking). In case there are more VMs in that physical node and is heavily used then the
VMs will compete for physical CPU time. In this case cgroups will do a fair share of CPU time between VMs (a VM
with CPU=2 will get double the time as a VM with CPU=1).

In case you are not overcommiting (CPU=VCPU) all the virtual CPUs will have one physical CPU (even if it’s not
pinned) so they could consume the number of VCPU assigned minus the virtualization overhead and any process
running in the host OS.

7.2.4 Usage

KVM Specific Attributes

The following are template attributes specific to KVM, please refer to the template reference documentation for a
complete list of the attributes supported to define a VM.

DISK

• TYPE: This attribute defines the type of the media to be exposed to the VM, possible values are: disk (default),
cdrom or floppy. This attribute corresponds to the media option of the -driver argument of the kvm
command.

• DRIVER: specifies the format of the disk image; possible values are raw, qcow2... This attribute corresponds
to the format option of the -driver argument of the kvm command.

• CACHE: specifies the optional cache mechanism, possible values are default, none, writethrough and
writeback.

• IO: set IO policy possible values are threads and native.

NIC

• TARGET: name for the tun device created for the VM. It corresponds to the ifname option of the ‘-net’
argument of the kvm command.

• SCRIPT: name of a shell script to be executed after creating the tun device for the VM. It corresponds to the
script option of the ‘-net’ argument of the kvm command.

• MODEL: ethernet hardware to emulate. You can get the list of available models with this command:

$ kvm -net nic,model=? -nographic /dev/null

• FILTER to define a network filtering rule for the interface. Libvirt includes some predefined rules (e.g. clean-
traffic) that can be used. Check the Libvirt documentation for more information, you can also list the rules in
your system with:

$ virsh -c qemu:///system nwfilter-list

Graphics

If properly configured, libvirt and KVM can work with SPICE (check this for more information). To select it, just add
to the GRAPHICS attribute:

7.2. KVM Driver 104

http://libvirt.org/formatnwfilter.html#nwfelemsRules
http://www.spice-space.org/

OpenNebula 5.2 Deployment guide, Release 5.2.1

• TYPE = SPICE

Enabling spice will also make the driver inject specific configuration for these machines. The configuration can be
changed in the driver configuration file, variable SPICE_OPTIONS.

Virtio

Virtio is the framework for IO virtualization in KVM. You will need a linux kernel with the virtio drivers for the guest,
check the KVM documentation for more info.

If you want to use the virtio drivers add the following attributes to your devices:

• DISK, add the attribute DEV_PREFIX="vd"

• NIC, add the attribute MODE="virtio"

Additional Attributes

The raw attribute offers the end user the possibility of passing by attributes not known by OpenNebula to KVM.
Basically, everything placed here will be written literally into the KVM deployment file (use libvirt xml format and
semantics).

RAW = [type = "kvm",
data = "<devices><serial type=\"pty\"><source path=\"/dev/pts/5\"/><target

→˓port=\"0\"/></serial><console type=\"pty\" tty=\"/dev/pts/5\"><source path=\"/dev/
→˓pts/5\"/><target port=\"0\"/></console></devices>"]

Disk/Nic Hotplugging

KVM supports hotplugging to the virtio and the SCSI buses. For disks, the bus the disk will be attached to is
inferred from the DEV_PREFIX attribute of the disk template.

• vd: virtio (recommended).

• sd: SCSI (default).

If TARGET is passed instead of DEV_PREFIX the same rules apply (what happens behind the scenes is that Open-
Nebula generates a TARGET based on the DEV_PREFIX if no TARGET is provided).

The configuration for the default cache type on newly attached disks is configured in /var/lib/one/remotes/
vmm/kvm/kvmrc:

This parameter will set the default cache type for new attached disks. It
will be used in case the attached disk does not have an specific cache
method set (can be set using templates when attaching a disk).
DEFAULT_ATTACH_CACHE=none

For Disks and NICs, if the guest OS is a Linux flavor, the guest needs to be explicitly tell to rescan the PCI bus. This
can be done issuing the following command as root:

echo 1 > /sys/bus/pci/rescan

7.2. KVM Driver 105

http://www.linux-kvm.org/page/Virtio

OpenNebula 5.2 Deployment guide, Release 5.2.1

Enabling QEMU Guest Agent

QEMU Guest Agent allows the communication of some actions with the guest OS. This agent uses a virtio serial
connection to send and receive commands. One of the interesting actions is that it allows to freeze the filesystem
before doing an snapshot. This way the snapshot won’t contain half written data. Filesystem freeze will only be used
with CEPH and qcow2 storage drivers.

The agent package needed in the Guest OS is available in most distributions. Is called qemu-guest-agent in most
of them. If you need more information you can follow these links:

• https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_
Deployment_and_Administration_Guide/chap-QEMU_Guest_Agent.html

• http://wiki.libvirt.org/page/Qemu_guest_agent

• http://wiki.qemu.org/Features/QAPI/GuestAgent

To enable the communication channel with the guest agent this line must be present in /etc/one/vmm_exec/
vmm_exec_kvm.conf:

RAW = "<devices><channel type='unix'><source mode='bind'/><target type='virtio' name=
→˓'org.qemu.guest_agent.0'/></channel></devices>"

Importing VMs

VMs running on KVM hypervisors that were not launched through OpenNebula can be imported in OpenNebula.
It is important to highlight that, besides the limitations explained in the host guide, the “Poweroff” operation is not
available for these imported VMs in KVM.

7.2.5 Tuning & Extending

Multiple Actions per Host

Warning: This feature is experimental. Some modifications to the code must be done before this is a recom-
mended setup.

By default the drivers use a unix socket to communicate with the libvirt daemon. This method can only be safely used
by one process at a time. To make sure this happens the drivers are configured to send only one action per host at a
time. For example, there will be only one deployment done per host at a given time.

This limitation can be solved configuring libvirt to accept TCP connections and OpenNebula to use this communication
method.

Libvirt configuration

Here is described how to configure libvirtd to accept unencrypted and unauthenticated TCP connections in a CentOS
7 machine. For other setup check your distribution and libvirt documentation.

Change the file /etc/libvirt/libvirtd.conf in each of the hypervisors and make sure that these parameters
are set and have the following values:

7.2. KVM Driver 106

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-QEMU_Guest_Agent.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-QEMU_Guest_Agent.html
http://wiki.libvirt.org/page/Qemu_guest_agent
http://wiki.qemu.org/Features/QAPI/GuestAgent

OpenNebula 5.2 Deployment guide, Release 5.2.1

listen_tls = 0
listen_tcp = 1
tcp_port = "16509"
auth_tcp = "none"

You will also need to modify /etc/sysconfig/libvirtd and uncomment this line:

LIBVIRTD_ARGS="--listen"

After modifying these files the libvirt daemon must be restarted:

$ sudo systemctl restart libvirtd

OpenNebula configuration

The VMM driver must be configured so it allows more than one action to be executed per host. This can be done adding
the parameter -p to the driver executable. This is done in /etc/one/oned.conf in the VM_MAD configuration
section:

VM_MAD = [
name = "kvm",
executable = "one_vmm_exec",
arguments = "-t 15 -r 0 kvm -p",
default = "vmm_exec/vmm_exec_kvm.conf",
type = "kvm"]

Change the file /var/lib/one/remotes/vmm/kvm/kvmrc so set a TCP endpoint for libvirt communication:

export LIBVIRT_URI=qemu+tcp://localhost/system

The scheduler configuration should also be changed to let it deploy more than one VM per host. The file is located at
/etc/one/sched.conf and the value to change is MAX_HOST For example, to let the scheduler submit 10 VMs
per host use this line:

MAX_HOST = 10

After this update the remote files in the nodes and restart opennebula:

$ onehost sync --force
$ sudo systemctl restart opennebula

Files and Parameters

The driver consists of the following files:

• /usr/lib/one/mads/one_vmm_exec : generic VMM driver.

• /var/lib/one/remotes/vmm/kvm : commands executed to perform actions.

And the following driver configuration files:

• /etc/one/vmm_exec/vmm_exec_kvm.conf : This file is home for default values for domain definitions
(in other words, OpenNebula templates).

7.2. KVM Driver 107

OpenNebula 5.2 Deployment guide, Release 5.2.1

It is generally a good idea to place defaults for the KVM-specific attributes, that is, attributes mandatory in the KVM
driver that are not mandatory for other hypervisors. Non mandatory attributes for KVM but specific to them are also
recommended to have a default.

• /var/lib/one/remotes/vmm/kvm/kvmrc : This file holds instructions to be executed before the actual
driver load to perform specific tasks or to pass environmental variables to the driver. The syntax used for the
former is plain shell script that will be evaluated before the driver execution. For the latter, the syntax is the
familiar:

ENVIRONMENT_VARIABLE=VALUE

The parameters that can be changed here are as follows:

Parameter Description
LIBVIRT_URI Connection string to libvirtd
QEMU_PROTOCOLProtocol used for live migrations
SHUTDOWN_TIMEOUTSeconds to wait after shutdown until timeout
FORCE_DESTROYForce VM cancellation after shutdown timeout
CANCEL_NO_ACPIForce VM’s without ACPI enabled to be destroyed on shutdown
DEFAULT_ATTACH_CACHEThis parameter will set the default cache type for new attached disks. It will be used in case the

attached disk does not have an specific cache method set (can be set using templates when
attaching a disk).

MIGRATE_OPTIONSSet options for the virsh migrate command

See the Virtual Machine drivers reference for more information.

7.2.6 Troubleshooting

image magic is incorrect

When trying to restore the VM from a suspended state this error is returned:

libvirtd1021: operation failed: image magic is incorrect

It can be fixed by applying:

options kvm_intel nested=0
options kvm_intel emulate_invalid_guest_state=0
options kvm ignore_msrs=1

7.3 Monitoring

This section provides an overview of the OpenNebula monitoring subsystem. The monitoring subsystem gathers
information relative to the Hosts and the Virtual Machines, such as the Host status, basic performance indicators, as
well as Virtual Machine status and capacity consumption. This information is collected by executing a set of static
probes provided by OpenNebula. The output of these probes is sent to OpenNebula using a push mechanism.

7.3.1 Overview

Each host periodically sends monitoring data via UDP to the Frontend which collects it and processes it in a dedicated
module. This distributed monitoring system resembles the architecture of dedicated monitoring systems, using a
lightweight communication protocol, and a push model.

7.3. Monitoring 108

OpenNebula 5.2 Deployment guide, Release 5.2.1

OpenNebula starts a collectd daemon running in the Front-end that listens for UDP connections on port 4124. In
the first monitoring cycle the OpenNebula connects to the host using ssh and starts a daemon that will execute the
probe scripts and sends the collected data to the collectd daemon in the Frontend every specific amount of seconds
(configurable with the -i option of the collectd IM_MAD). This way the monitoring subsystem doesn’t need to
make new ssh connections to receive data.

If the agent stops in a specific Host, OpenNebula will detect that no monitorization data is received from that hosts
and will restart the probe with SSH.

7.3.2 Requirements

• The firewall of the Frontend (if enabled) must allow UDP packages incoming from the hosts on port 4124.

7.3.3 OpenNebula Configuration

Enabling the Drivers

To enable this monitoring system /etc/one/oned.conf must be configured with the following snippets:

collectd must be enabled both for KVM:

#---
Information Collector for KVM IM's.
#---
This driver CANNOT BE ASSIGNED TO A HOST, and needs to be used with KVM
-h prints this help.
-a Address to bind the collectd sockect (defults 0.0.0.0)
-p UDP port to listen for monitor information (default 4124)
-f Interval in seconds to flush collected information (default 5)
-t Number of threads for the server (defult 50)
-i Time in seconds of the monitorization push cycle. This parameter must

7.3. Monitoring 109

OpenNebula 5.2 Deployment guide, Release 5.2.1

be smaller than MONITORING_INTERVAL, otherwise push monitorization will
not be effective.
#---
IM_MAD = [

NAME = "collectd",
EXECUTABLE = "collectd",
ARGUMENTS = "-p 4124 -f 5 -t 50 -i 20"]

#---

Valid arguments for this driver are:

• -a: Address to bind the collectd socket (defaults 0.0.0.0)

• -p: port number

• -f: Interval in seconds to flush collected information to OpenNebula (default 5)

• -t: Number of threads for the collectd server (defult 50)

• -i: Time in seconds of the monitorization push cycle. This parameter must be smaller than MONITOR-
ING_INTERVAL (see below), otherwise push monitorization will not be effective.

KVM:

#---
KVM UDP-push Information Driver Manager Configuration
-r number of retries when monitoring a host
-t number of threads, i.e. number of hosts monitored at the same time
#---
IM_MAD = [

NAME = "kvm",
SUNSTONE_NAME = "KVM",
EXECUTABLE = "one_im_ssh",
ARGUMENTS = "-r 3 -t 15 kvm"]

#---

The arguments passed to this driver are:

• -r: number of retries when monitoring a host

• -t: number of threads, i.e. number of hosts monitored at the same time

Monitoring Configuration Parameters

OpenNebula allows to customize the general behavior of the whole monitoring subsystem:

Parameter Description
MONITOR-
ING_INTERVAL

Time in seconds between host and VM monitorization. It must have a value greater
than the manager timer

HOST_PER_INTERVAL Number of hosts monitored in each interval.

7.3.4 Troubleshooting

Healthy Monitoring System

Every (approximately) monitoring_push_cycle of seconds OpenNebula is receiving the monitoring data of
every Virtual Machine and of a host like such:

7.3. Monitoring 110

OpenNebula 5.2 Deployment guide, Release 5.2.1

Tue May 24 16:21:47 2016 [Z0][InM][D]: Host thost087 (0) successfully monitored.
Tue May 24 16:21:47 2016 [Z0][VMM][D]: VM 0 successfully monitored: STATE=a CPU=0.0
→˓MEMORY=113404 NETRX=648 NETTX=398
Tue May 24 16:22:07 2016 [Z0][InM][D]: Host thost087 (0) successfully monitored.
Tue May 24 16:22:07 2016 [Z0][VMM][D]: VM 0 successfully monitored: STATE=a CPU=0.0
→˓MEMORY=113516 NETRX=648 NETTX=468
Tue May 24 16:22:11 2016 [Z0][VMM][D]: VM 0 successfully monitored: DISK_SIZE=[ID=0,
→˓SIZE=27] DISK_SIZE=[ID=1,SIZE=1]
Tue May 24 16:22:27 2016 [Z0][InM][D]: Host thost087 (0) successfully monitored.
Tue May 24 16:22:27 2016 [Z0][VMM][D]: VM 0 successfully monitored: STATE=a CPU=0.0
→˓MEMORY=113544 NETRX=648 NETTX=468

However, if in oned.log a host is being monitored actively periodically (every MONITORING_INTERVAL sec-
onds) then the monitorization is not working correctly:

Tue May 24 16:24:23 2016 [Z0][InM][D]: Monitoring host thost087 (0)
Tue May 24 16:25:23 2016 [Z0][InM][D]: Monitoring host thost087 (0)
Tue May 24 16:26:23 2016 [Z0][InM][D]: Monitoring host thost087 (0)

If this is the case it’s probably because OpenNebula is receiving probes faster than it can process. See the Tuning
section to fix this.

Monitoring Probes

For the troubleshooting of errors produced during the execution of the monitoring probes, please refer to the trou-
bleshooting section.

7.3.5 Tuning & Extending

Adjust Monitoring Interval Times

In order to tune your OpenNebula installation with appropriate values of the monitoring parameters you need to adjust
the -i option of the collectd IM_MAD (the monitoring push cycle).

If the system is not working healthily it will be due to the database throughput since OpenNebula will write the
monitoring information to a database, an amount of ~4KB per VM. If the number of virtual machines is too large and
the monitoring push cycle too low, OpenNebula will not be able to write that amount of data to the database.

Driver Files

The probes are specialized programs that obtain the monitor metrics. Probes are defined for each hypervisor, and are
located at /var/lib/one/remotes/im/kvm-probes.d for KVM.

You can easily write your own probes or modify existing ones, please see the Information Manager Drivers guide.
Remember to synchronize the monitor probes in the hosts using onehost sync as described in the Managing
Hosts guide.

7.4 PCI Passthrough

It is possible to discover PCI devices in the Hosts and assign them to Virtual Machines for the KVM hypervisor.

7.4. PCI Passthrough 111

OpenNebula 5.2 Deployment guide, Release 5.2.1

The setup and environment information is taken from here. You can safely ignore all the VGA related sections, for
PCI devices that are not graphic cards, or if you don’t want to output video signal from them.

Warning: The overall setup state was extracted from a preconfigured Fedora 22 machine. Configuration for
your distro may be different.

7.4.1 Requirements

• The host that is going to be used for virtualization needs to support I/O MMU. For Intel processors this is called
VT-d and for AMD processors is called AMD-Vi. The instructions are made for Intel branded processors but
the process should be very similar for AMD.

• kernel >= 3.12

7.4.2 Machine Configuration (Hypervisor)

Kernel Configuration

The kernel must be configured to support I/O MMU and to blacklist any driver that could be accessing the PCI’s that
we want to use in our VMs. The parameter to enable I/O MMU is:

intel_iommu=on

We also need to tell the kernel to load the vfio-pci driver and blacklist the drivers for the selected cards. For
example, for nvidia GPUs we can use these parameters:

rd.driver.pre=vfio-pci rd.driver.blacklist=nouveau

Loading vfio Driver in initrd

The modules for vfio must be added to initrd. The list of modules are vfio vfio_iommu_type1 vfio_pci
vfio_virqfd. For example, if your system uses dracut add the file /etc/dracut.conf.d/local.conf
with this line:

add_drivers+="vfio vfio_iommu_type1 vfio_pci vfio_virqfd"

and regenerate initrd:

dracut --force

Driver Blacklisting

The same blacklisting done in the kernel parameters must be done in the system configuration. /etc/modprobe.
d/blacklist.conf for nvidia GPUs:

blacklist nouveau
blacklist lbm-nouveau
options nouveau modeset=0
alias nouveau off
alias lbm-nouveau off

7.4. PCI Passthrough 112

http://www.firewing1.com/howtos/fedora-20/create-gaming-virtual-machine-using-vfio-pci-passthrough-kvm
https://en.wikipedia.org/wiki/IOMMU

OpenNebula 5.2 Deployment guide, Release 5.2.1

Alongside this configuration vfio driver should be loaded passing the id of the PCI cards we want to attach to VMs.
For example, for nvidia Grid K2 GPU we pass the id 10de:11bf. File /etc/modprobe.d/local.conf:

options vfio-pci ids=10de:11bf

vfio Device Binding

I/O MMU separates PCI cards into groups to isolate memory operation between devices and VMs. To add the cards
to vfio and assign a group to them we can use the scripts shared in the aforementioned web page.

This script binds a card to vfio. It goes into /usr/local/bin/vfio-bind:

#!/bin/sh
modprobe vfio-pci
for dev in "$@"; do

vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [-e /sys/bus/pci/devices/\$dev/driver]; then

echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id

done

The configuration goes into /etc/sysconfig/vfio-bind. The cards are specified with PCI addresses. Ad-
dresses can be retrieved with lspci command. Make sure to prepend the domain that is usually 0000. For example:

DEVICES="0000:04:00.0 0000:05:00.0 0000:84:00.0 0000:85:00.0"

Here is a systemd script that executes the script. It can be written to /etc/systemd/system/vfio-bind.
service and enabled:

[Unit]
Description=Binds devices to vfio-pci
After=syslog.target

[Service]
EnvironmentFile=-/etc/sysconfig/vfio-bind
Type=oneshot
RemainAfterExit=yes
ExecStart=-/usr/local/bin/vfio-bind $DEVICES

[Install]
WantedBy=multi-user.target

qemu Configuration

Now we need to give qemu access to the vfio devices for the groups assigned to the PCI cards. We can get a list of PCI
cards and its I/O MMU group using this command:

find /sys/kernel/iommu_groups/ -type l

In our example our cards have the groups 45, 46, 58 and 59 so we add this configuration to /etc/libvirt/qemu.
conf:

7.4. PCI Passthrough 113

http://www.firewing1.com/howtos/fedora-20/create-gaming-virtual-machine-using-vfio-pci-passthrough-kvm

OpenNebula 5.2 Deployment guide, Release 5.2.1

cgroup_device_acl = [
"/dev/null", "/dev/full", "/dev/zero",
"/dev/random", "/dev/urandom",
"/dev/ptmx", "/dev/kvm", "/dev/kqemu",
"/dev/rtc","/dev/hpet", "/dev/vfio/vfio",
"/dev/vfio/45", "/dev/vfio/46", "/dev/vfio/58",
"/dev/vfio/59"

]

7.4.3 Driver Configuration

The only configuration that is needed is the filter for the monitoring probe that gets the list of PCI cards. By default
the probe lists all the cards available in a host. To narrow the list a filter configuration can be changed in /var/lib/
one/remotes/im/kvm-probes.d/pci.rb and set a list with the same format as lspci:

This variable contains the filters for PCI card monitoring. The format
is the same as lspci and several filters can be added separated by commas.
A nil filter will retrieve all PCI cards.
#
From lspci help:
-d [<vendor>]:[<device>][:<class>]
#
For example
#
FILTER = '::0300' # all VGA cards
FILTER = '10de::0300' # all NVIDIA VGA cards
FILTER = '10de:11bf:0300' # only GK104GL [GRID K2]
FILTER = '8086::0300,::0106' # all Intel VGA cards and any SATA controller

7.4.4 Usage

The basic workflow is to inspect the host information, either in the CLI or in Sunstone, to find out the available PCI
devices, and to add the desired device to the template. PCI devices can be added by specifying VENDOR, DEVICE
and CLASS, or simply CLASS. Note that OpenNebula will only deploy the VM in a host with the available PCI
device. If no hosts match, an error message will appear in the Scheduler log.

CLI

A new table in onehost show command gives us the list of PCI devices per host. For example:

PCI DEVICES

VM ADDR TYPE NAME
00:00.0 8086:0a04:0600 Haswell-ULT DRAM Controller
00:02.0 8086:0a16:0300 Haswell-ULT Integrated Graphics Controller

123 00:03.0 8086:0a0c:0403 Haswell-ULT HD Audio Controller
00:14.0 8086:9c31:0c03 8 Series USB xHCI HC
00:16.0 8086:9c3a:0780 8 Series HECI #0
00:1b.0 8086:9c20:0403 8 Series HD Audio Controller
00:1c.0 8086:9c10:0604 8 Series PCI Express Root Port 1
00:1c.2 8086:9c14:0604 8 Series PCI Express Root Port 3
00:1d.0 8086:9c26:0c03 8 Series USB EHCI #1
00:1f.0 8086:9c43:0601 8 Series LPC Controller

7.4. PCI Passthrough 114

OpenNebula 5.2 Deployment guide, Release 5.2.1

00:1f.2 8086:9c03:0106 8 Series SATA Controller 1 [AHCI mode]
00:1f.3 8086:9c22:0c05 8 Series SMBus Controller
02:00.0 8086:08b1:0280 Wireless 7260

• VM: The VM ID using that specific device. Empty if no VMs are using that device.

• ADDR: PCI Address.

• TYPE: Values describing the device. These are VENDOR:DEVICE:CLASS. These values are used when
selecting a PCI device do to passthrough.

• NAME: Name of the PCI device.

To make use of one of the PCI devices in a VM a new option can be added selecting which device to use. For example
this will ask for a Haswell-ULT HD Audio Controller:

PCI = [
VENDOR = "8086",
DEVICE = "0a0c",
CLASS = "0403"

]

The device can be also specified without all the type values. For example, to get any PCI Express Root Ports this can
be added to a VM tmplate:

PCI = [
CLASS = "0604"

]

More than one PCI options can be added to attach more than one PCI device to the VM.

Sunstone

In Sunstone the information is displayed in the PCI tab:

7.4. PCI Passthrough 115

OpenNebula 5.2 Deployment guide, Release 5.2.1

To add a PCI device to a template, select the Other tab:

7.4.5 Usage as Network Interfaces

It is possible use a PCI device as a NIC interface directly in OpenNebula. In order to do so you will need to follow the
configuration steps mentioned in this guide, namely changing the device driver.

When defining a Network that will be used for PCI passthrough nics, please use either the dummy network driver or
the 802.1Q if you are using VLAN. In any case, type any random value into the BRIDGE field, and it will be ignored.
For 802.1Q you can also leave PHYDEV blank.

The context packages support the configuration of the following attributes:

• MAC: It will change the mac address of the corresponding network interface to the MAC assigned by OpenNeb-
ula.

• IP: It will assign an IPv4 address to the interface, assuming a /24 netmask.

• IPV6: It will assign an IPv6 address to the interface, assuming a /128 netmask.

• VLAN_ID: If present, it will create a tagged interface and assign the IPs to the tagged interface.

CLI

When a PCI in a template contains the attribute TYPE="NIC", it will be treated as a NIC and OpenNebula will
assign a MAC address, a VLAN_ID, an IP, etc, to the PCI device.

This is an example of the PCI section of an interface that will be treated as a NIC:

PCI=[
NETWORK="passthrough",
NETWORK_UNAME="oneadmin",
TYPE="NIC",
CLASS="0200",
DEVICE="10d3",
VENDOR="8086"]

7.4. PCI Passthrough 116

OpenNebula 5.2 Deployment guide, Release 5.2.1

Note that the order of appearence of the PCI elements and NIC elements in the template is relevant. The will be
mapped to nics in the order they appear, regardless if they’re NICs of PCIs.

Sunstone

In the Network tab, under advanced options check the PCI Passthrough option and fill in the PCI address. Use the
rest of the dialog as usual by selecting a network from the table.

7.4. PCI Passthrough 117

CHAPTER

EIGHT

OPEN CLOUD STORAGE SETUP

8.1 Overview

8.1.1 Datastore Types

OpenNebula storage is structured around the Datastore concept. A Datastore is any storage medium to store disk
images. OpenNebula features three different datastore types:

• The Images Datastore, stores the images repository.

• The System Datastore holds disk for running virtual machines. Disk are moved, or cloned to/from the Images
datastore when the VMs are deployed or terminated; or when disks are attached or snapshotted.

• The Files & Kernels Datastore to store plain files and not disk images. The plain files can be used as kernels,
ram-disks or context files. See details here.

118

OpenNebula 5.2 Deployment guide, Release 5.2.1

Image Datastores

There are different Image Datastores depending on how the images are stored on the underlying storage technology:

• Filesystem, to store images in a file form.

• LVM, to store images in LVM logical volumes.

• Ceph, to store images using Ceph block devices.

• Raw Device Mapping, to direct attach to the virtual machine existing block devices in the nodes.

• iSCSI - Libvirt Datastore, to access iSCSI devices through the buil-in qemu support.

Disk images are transferred between the Image and System datastores by the transfer manager (TM) drivers. These
drivers are specialized pieces of software that perform low-level storage operations. The following table summarizes
the available transfer modes for each datastore:

Datastore Image to System Datastore disk transfers methods
Filesystem

• shared, images are exported in a shared filesys-
tem

• ssh, images are copied using the ssh protocol
• qcow2, like shared but specialized for the qcow2

format

Ceph
• ceph, all images are exported in Ceph pools
• shared, volatile & context disks exported in a

shared FS.

LVM
• fs_lvm, images exported in a shared FS but

dumped to a LV

Raw Devices
• dev, images are existing block devices in the

nodes

iSCSI libvirt
• iscsi, images are iSCSI targets

8.1.2 How Should I Read This Chapter

Before reading this chapter make sure you have read the Open Cloud Host chapter. After that, proceed to the specific
section for the Datastores you may be interested in.

After reading this chapter you should read the Open Cloud Networking chapter.

8.1.3 Hypervisor Compatibility

This chapter applies only to KVM.

Follow the vCenter Storage section for a similar guide for vCenter.

8.1. Overview 119

OpenNebula 5.2 Deployment guide, Release 5.2.1

8.2 Filesystem Datastore

The Filesystem Datastore lets you store VM images in a file form. The use of file-based disk images presents several
benefits over device backed disks (e.g. easily backup images, or use of shared FS) although it may less performing in
some cases.

Usually it is a good idea to have multiple filesystem datastores to:

• Balancing I/O operations between storage servers

• Use different datastores for different cluster hosts

• Apply different transfer modes to different images

• Different SLA policies (e.g. backup) can be applied to different VM types or users

• Easily add new storage to the cloud

The Filesystem datastore can be used with three different transfer modes, described below:

• shared, images are exported in a shared filesystem

• ssh, images are copied using the ssh protocol

• qcow2, like shared but specialized for the qcow2 format

8.2.1 Datastore Layout

Images are saved into the corresponding datastore directory (/var/lib/one/datastores/<DATASTORE
ID>). Also, for each running virtual machine there is a directory (named after the VM ID) in the corresponding
System Datastore. These directories contain the VM disks and additional files, e.g. checkpoint or snapshots.

For example, a system with an Image Datastore (1) with three images and 3 Virtual Machines (VM 0 and 2 running,
and VM 7 stopped) running from System Datastore 0 would present the following layout:

/var/lib/one/datastores
|-- 0/
| |-- 0/
| | |-- disk.0
| | `-- disk.1
| |-- 2/
| | `-- disk.0
| `-- 7/
| |-- checkpoint
| `-- disk.0
`-- 1

|-- 05a38ae85311b9dbb4eb15a2010f11ce
|-- 2bbec245b382fd833be35b0b0683ed09
`-- d0e0df1fb8cfa88311ea54dfbcfc4b0c

Note: The canonical path for /var/lib/one/datastores can be changed in oned.conf with the
DATASTORE_LOCATION configuration attribute

Shared & Qcow2 Transfer Modes

The shared transfer driver assumes that the datastore is mounted in all the hosts of the cluster. Typically this is achieved
through a distributed FS like NFS, GlusterFS or Lustre.

8.2. Filesystem Datastore 120

OpenNebula 5.2 Deployment guide, Release 5.2.1

When a VM is created, its disks (the disk.i files) are copied or linked in the corresponding directory of the system
datastore. These file operations are always performed remotely on the target host.

This transfer mode usually reduces VM deployment times and enables live-migration, but it can also become a
bottleneck in your infrastructure and degrade your Virtual Machines performance if the virtualized services perform
disk-intensive workloads. Usually this limitation may be overcome by:

• Using different file-system servers for the images datastores, so the actual I/O bandwidth is balanced

• Using an ssh System Datastore instead, the images are copied locally to each host

• Tuning or improving the file-system servers

SSH Transfer Mode

In this case the System Datastore is distributed among the hosts. The ssh transfer driver uses the hosts’ local storage
to place the images of running Virtual Machines. All the operations are then performed locally but images have to be
copied always to the hosts, which in turn can be a very resource demanding operation. Also this driver prevents the
use of live-migrations between hosts.

8.2. Filesystem Datastore 121

OpenNebula 5.2 Deployment guide, Release 5.2.1

8.2.2 Frontend Setup

The Frontend needs to prepare the storage area for:

• The Image Datastores, to store the images.

• The System Datastores, will hold temporary disks and files for VMs stopped and undeployed.

Shared & Qcow2 Transfer Modes

Simply mount the Image Datastore directory in the front-end in /var/lib/one/datastores/
<datastore_id>. Note that if all the datastores are of the same type you can mount the whole /var/
lib/one/datastores directory.

Warning: The frontend only needs to mount the Image Datastores and not the System Datastores.

Note: NFS volumes mount tips. The following options are recomended to mount a NFS shares:soft, intr,
rsize=32768, wsize=32768. With the documented configuration of libvirt/kvm the image files are accessed
as oneadmin user. In case the files must be read by root the option no_root_squash must be added.

SSH Transfer Mode

Simply make sure that there is enough space under /var/lib/one/datastores to store Images and the disks
of the stopped and undeployed virtual machines. Note that /var/lib/one/datastores can be mounted
from any NAS/SAN server in your network.

8.2.3 Node Setup

8.2. Filesystem Datastore 122

OpenNebula 5.2 Deployment guide, Release 5.2.1

Shared & Qcow2 Transfer Modes

The configuration is the same as for the Frontend above, simply mount in each node the datastore directories in
/var/lib/one/datastores/<datastore_id>.

SSH Transfer Mode

Just make sure that there is enough space under /var/lib/one/datastores to store the disks of running VMs
on that host.

Warning: Make sure all the hosts, including the frontend, can ssh to any other host (including themselves).
Otherwise migrations will not work.

8.2.4 OpenNebula Configuration

Once the Filesystem storage is setup, the OpenNebula configuration comprises two steps:

• Create a System Datastore

• Create an Image Datastore

Create a System Datastore

To create a new System Datastore you need to specify its type as system datastore and transfer mode:

Attribute Description
NAME The name of the datastore
TYPE SYSTEM_DS
TM_MAD shared for shared transfer mode

qcow2 for qcow2 transfer mode
ssh for ssh transfer mode

This can be done either in Sunstone or through the CLI, for example to create a System Datastore using the shared
mode simply:

$ cat systemds.txt
NAME = nfs_system
TM_MAD = shared
TYPE = SYSTEM_DS

$ onedatastore create systemds.txt
ID: 101

Create an Image Datastore

In the same way, to create an Image Datastore you need to set:

8.2. Filesystem Datastore 123

OpenNebula 5.2 Deployment guide, Release 5.2.1

Attribute Description
NAME The name of the datastore
DS_MAD fs
TM_MAD shared for shared transfer mode

qcow2 for qcow2 transfer mode
ssh for ssh transfer mode

For example, the following illustrates the creation of a filesystem datastore using the shared transfer drivers.

$ cat ds.conf
NAME = nfs_images
DS_MAD = fs
TM_MAD = shared

$ onedatastore create ds.conf
ID: 100

Also note that there are additional attributes that can be set, check the datastore template attributes.

Warning: Be sure to use the same TM_MAD for both the System and Image datastore.

Addtional Configuration

The qcow2 drivers are a specialization of the shared drivers to work with the qcow2 format for disk images. Images are
created and through the qemu-img command using the original image as backing file. Custom options can be sent to
qemu-img clone action through the variable QCOW2_OPTIONS in /var/lib/one/remotes/tm/tmrc.

8.3 Ceph Datastore

The Ceph datastore driver provides OpenNebula users with the possibility of using Ceph block devices as their Virtual
Images.

Warning: This driver requires that the OpenNebula nodes using the Ceph driver must be Ceph clients of a running
Ceph cluster. More information in Ceph documentation.

8.3.1 Datastore Layout

Images and virtual machine disks are stored in the same Ceph pool. Each Image is named one-<IMAGE ID> in the
pool. Virtual machines will use these rbd volumes for its disks if the Images are persistent, otherwise new snapshots
are created in the form one-<IMAGE ID>-<VM ID>-<DISK ID>.

For example, consider a system using an Image and System Datastore backed by a Ceph pool named one. The pool
with one Image (ID 0) and two Virtual Machines 14 and 15 using this Image as virtual disk 0 would be similar to:

$ rbd ls -l -p one --id libvirt
NAME SIZE PARENT FMT PROT LOCK
one-0 10240M 2
one-0@snap 10240M 2 yes
one-0-14-0 10240M one/one-0@snap 2
one-0-15-0 10240M one/one-0@snap 2

8.3. Ceph Datastore 124

http://ceph.com/docs/master/

OpenNebula 5.2 Deployment guide, Release 5.2.1

Note: In this case context disk and auxiliar files (deployment description and chekpoints) are stored locally in the
nodes.

8.3.2 Ceph Cluster Setup

This guide assumes that you already have a functional Ceph cluster in place. Additionally you need to:

• Create a pool for the OpenNebula datastores. Write down the name of the pool to include it in the datastore
definitions.

$ ceph osd pool create one 128

$ ceph osd lspools
0 data,1 metadata,2 rbd,6 one,

• Define a Ceph user to access the datastore pool, this user will be also used by libvirt to access the disk images.
Also, get a copy of the key of this user to distribute it later to the OpenNebula nodes. For example, create a user
libvirt:

$ ceph auth get-or-create client.libvirt mon 'allow r' osd \
'allow class-read object_prefix rbd_children, allow rwx pool=one'

$ ceph auth get-key client.libvirt | tee client.libvirt.key

$ ceph auth get client.libvirt -o ceph.client.libvirt.keyring

• Altough RDB format 1 is supported it is strongly recommended to use Format 2. Check that ceph.conf
includes:

[global]
rbd_default_format = 2

• Pick a set of client nodes of the cluster to act as storage bridges. These nodes will be used to import images into
the Ceph Cluster from OpenNebula. These nodes must have qemu-img command installed.

Note: For production environments it is recommended to not co-allocate ceph services (monitor, osds) with Open-
Nebula nodes or front-end

8.3.3 Frontend Setup

The Frontend does not need any specific Ceph setup, it will access the Ceph cluster through the storage bridges.

8.3.4 Node Setup

In order to use the Ceph cluster the nodes needs to be configured as follows:

• The ceph client tools must be available in the node

• The mon daemon must be defined in the ceph.conf for all the nodes, so hostname and port doesn’t need
to be specified explicitly in any Ceph command.

8.3. Ceph Datastore 125

OpenNebula 5.2 Deployment guide, Release 5.2.1

• Copy the Ceph user keyring (ceph.client.libvirt.keyring) to the nodes under /etc/ceph, and
the user key (client.libvirt.key) to the oneadmin home.

$ scp ceph.client.libvirt.keyring root@node:/etc/ceph

$ scp client.libvirt.key oneadmin@node:

• Generate a secret for the Ceph user and copy it to the nodes under oneadmin home. Write down the UUID for
later use.

$ UUID=`uuidgen`; echo $UUID
c7bdeabf-5f2a-4094-9413-58c6a9590980

$ cat > secret.xml <<EOF
<secret ephemeral='no' private='no'>

<uuid>$UUID</uuid>
<usage type='ceph'>

<name>client.libvirt secret</name>
</usage>

</secret>
EOF

$ scp secret.xml oneadmin@node:

• Define the a libvirt secret and remove key files in the nodes:

$ virsh -c qemu:///system secret-define secret.xml

$ virsh -c qemu:///system secret-set-value --secret $UUID --base64 $(cat client.
→˓libvirt.key)

$ rm client.libvirt.key

• The oneadmin account needs to access the Ceph Cluster using the libvirt Ceph user defined above. This
requires access to the ceph user keyring. Test that Ceph client is properly configured in the node.

$ ssh oneadmin@node

$ rbd ls -p one --id libvirt

You can read more information about this in the Ceph guide Using libvirt with Ceph.

• Ancillary virtual machine files like context disks, deployment and checkpoint files are created at the nodes under
/var/lib/one/datastores/, make sure that enough storage for these files is provisioned in the nodes.

8.3.5 OpenNebula Configuration

To use your Ceph cluster with OpenNebula you need to define a System and Image datastores. Both datastores will
share the same configuration parameters and Ceph pool.

Note: You may add addtional Image and System Datastores pointing to other pools with diffirent allocation/replication
policies in Ceph.

Each Image/System Datastore pair needs to define the same following attributes:

8.3. Ceph Datastore 126

http://ceph.com/docs/master/rbd/libvirt/

OpenNebula 5.2 Deployment guide, Release 5.2.1

Attribute Description Mandatory
POOL_NAME The Ceph pool name YES
CEPH_USER The Ceph user name, used by libvirt and rbd commands. YES
TM_MAD ceph YES
CEPH_CONF Non default ceph configuration file if needed. NO
RBD_FORMAT By default RBD Format 2 will be used. NO

Create a System Datastore

Create a System Datastore in Sunstone or through the CLI, for example:

$ cat systemds.txt
NAME = ceph_system
TM_MAD = ceph
TYPE = SYSTEM_DS

POOL_NAME = one
CEPH_USER = libvirt

$ onedatastore create systemds.txt
ID: 101

Note: Ceph can also work with a System Datastore of type Filesystem in a shared transfer mode, as described in the
Filesystem Datastore section. In that case volatile and swap disks are created as plain files in the System Datastore.
Note that apart from the Ceph Cluster you need to setup a shared FS.

Create an Image Datastore

Apart from the previous attributes, that need to be the same as the associated System Datastore, the following can be
set for an Image Datastore:

Attribute Description Manda-
tory

DS_MAD ceph YES
DISK_TYPE RBD YES
BRIDGE_LISTList of storage bridges to access the Ceph cluster YES
CEPH_HOST Space-separated list of Ceph monitors. Example: host1 host2:port2 host3

host4:port4.
YES

CEPH_SECRETThe UUID of the libvirt secret. YES
STAGING_DIRDefault path for image operations in the bridges NO

An example of datastore:

> cat ds.conf
NAME = "cephds"
DS_MAD = ceph
TM_MAD = ceph

DISK_TYPE = RBD

POOL_NAME = one
CEPH_HOST = host1 host2:port2
CEPH_USER = libvirt

8.3. Ceph Datastore 127

OpenNebula 5.2 Deployment guide, Release 5.2.1

CEPH_SECRET = "6f88b54b-5dae-41fe-a43e-b2763f601cfc"

BRIDGE_LIST = cephfrontend

> onedatastore create ds.conf
ID: 101

Addtional Configuration

Default values for the Ceph drivers can be set in /var/lib/one/remotes/datastore/ceph/ceph.conf:

• POOL_NAME: Default volume group

• STAGING_DIR: Default path for image operations in the storage bridges

• RBD_FORMAT: Default format for RBD volumes.

8.4 LVM Datastore

The LVM datastore driver provides OpenNebula with the possibility of using LVM volumes instead of plain files to
hold the Virtual Images. This reduces the overhead of having a file-system in place and thus it may increase I/O
performance.

8.4.1 Datastore Layout

Images are stored as regular files (under the usual path: /var/lib/one/datastores/<id>) in the Image Data-
store, but they will be dumped into a Logical Volumes (LV) upon virtual machine creation. The virtual machines will
run from Logical Volumes in the node.

This is the recommended driver to be used when a high-end SAN is available. The same LUN can be exported to all
the hosts, Virtual Machines will be able to run directly from the SAN.

8.4. LVM Datastore 128

OpenNebula 5.2 Deployment guide, Release 5.2.1

Note: The LVM datastore does not need CLVM configured in your cluster. The drivers refresh LVM meta-data each
time an image is needed in another host.

For example, consider a system with two Virtual Machines (9 and 10) using a disk, running in a LVM Datastore, with
ID 0. The nodes have configured a shared LUN and created a volume group named vg-one-0, the layout of the
datastore would be:

lvs
LV VG Attr LSize Pool Origin Data% Meta% Move
lv-one-10-0 vg-one-0 -wi------- 2.20g
lv-one-9-0 vg-one-0 -wi------- 2.20g

Warning: Images are stored in a shared storage in file form (e.g. NFS, GlusterFS...) the datastore directories
and mount points needs to be configured as a regular shared image datastore, please refer to FileSystem Datastore
guide. It is a good idea to first deploy a shared FileSystem datastore and once it is working replace the associated
System datastore with the LVM one, as described below.

8.4.2 Frontend Setup

No additional configuration is needed.

8.4.3 Node Setup

Nodes needs to meet the following requirements:

• LVM2 must be available in the Hosts.

• lvmetadmust be disabled. Set this parameter in /etc/lvm/lvm.conf: use_lvmetad = 0, and disable
the lvm2-lvmetad.service if running.

• oneadmin needs to belong to the disk group.

• All the nodes needs to have access to the same LUNs.

• A LVM VG needs to be created in the shared LUNs for each datastore following name:
vg-one-<system_ds_id>. This just need to be done in one node.

• Virtual Machine disks are symbolic links to the block devices. However, additional VM files like checkpoints
or deployment files are stored under /var/lib/one/datastores/<id>. Be sure that enough local space
is present.

• All the nodes needs to have access to the image datastore, mounting the asociated directory.

8.4.4 OpenNebula Configuration

Once the storage is setup, the OpenNebula configuration comprises two steps:

• Create a System Datastore

• Create an Image Datastore

8.4. LVM Datastore 129

OpenNebula 5.2 Deployment guide, Release 5.2.1

Create a System Datastore

LVM System Datastores needs to be created with the following values:

Attribute Description
NAME The name of the Datastore
TM_MAD fs_lvm
TYPE SYSTEM_DS

For example:

> cat ds.conf
NAME = lvm_system
TM_MAD = fs_lvm
TYPE = SYSTEM_DS
BRIDGE_LIST = "NODE1 NODE2"

> onedatastore create ds.conf
ID: 100

Create an Image Datastore

To create an Image Datastore you just need to define the name, and set the following:

Attribute Description
NAME The name of the datastore
TYPE IMAGE_DS
DS_MAD fs
TM_MAD fs_lvm
DISK_TYPE BLOCK
BRIDGE_LIST List of nodes (space separated) with access to the shared storage, used to copy new images.

For example, the following examples illustrates the creation of an LVM datastore using a configuration file. In this
case we will use the host host01 as one of our OpenNebula LVM-enabled hosts.

> cat ds.conf
NAME = production
DS_MAD = fs
TM_MAD = fs_lvm
DISK_TYPE = "BLOCK"
TYPE = IMAGE_DS
SAFE_DIRS="/var/tmp /tmp"
BRIDGE_LIST = "NODE1 NODE2"

> onedatastore create ds.conf
ID: 101

8.5 Raw Device Mapping (RDM) Datastore

The RDM Datastore is an Image Datastore that enables raw access to node block devices.

Warning: The datastore should only be usable by the administrators. Letting users create images in this datastore
will cause security problems. For example, register an image /dev/sda and reading the host filesystem.

8.5. Raw Device Mapping (RDM) Datastore 130

OpenNebula 5.2 Deployment guide, Release 5.2.1

8.5.1 Datastore Layout

The RDM Datastore is used to register already existent block devices in the nodes. The devices should be already
setup and available and, VMs using these devices must be fixed to run in the nodes ready for them. Additional virtual
machine files, like deployment files or volatile disks are created as regular files.

8.5.2 Frontend Setup

No addtional setup is required.

8.5.3 Node Setup

The devices you want to attach to a VM should be accessible by the hypervisor. As KVM usually runs as oneadmin,
make sure this user is in a group with access to the disk (like disk) and has read write permissions for the group.

8.5.4 OpenNebula Configuration

Once the storage is setup, the OpenNebula configuration comprises two steps:

• Create a System Datastore

• Create an Image Datastore

Create a System Datastore

The RDM Datastore can work with the following System Datastores:

• Filesystem, shared transfer mode

• Filesystem, ssh transfer mode

Please refer to the Filesystem Datastore section for more details. Note that the System Datastore is only used for
volatile disks and context devices.

Create an Image Datastore

To create an Image Datastore you just need to define the name, and set the following:

Attribute Description
NAME The name of the datastore
TYPE IMAGE_DS
DS_MAD dev
TM_MAD dev
DISK_TYPE BLOCK

An example of datastore:

> cat rdm.conf
NAME = rdm_datastore
TYPE = "IMAGE_DS"
DS_MAD = "dev"
TM_MAD = "dev"
DISK_TYPE = "BLOCK"

8.5. Raw Device Mapping (RDM) Datastore 131

OpenNebula 5.2 Deployment guide, Release 5.2.1

> onedatastore create rdm.conf
ID: 101

8.5.5 Datastore Usage

New images can be added as any other image specifying the path. If you are using the CLI do not use the shorthand
parameters as the CLI check if the file exists and the device most provably won’t exist in the frontend. As an example
here is an image template to add a node disk /dev/sdb:

NAME=scsi_device
PATH=/dev/sdb
PERSISTENT=YES

Note: As this datastore does is just a container for existing devices images does not take any size from it. All devices
registered will render size of 0 and the overall devices datastore will show up with 1MB of available space

8.6 iSCSI - Libvirt Datastore

This datastore is used to register already existing iSCSI volume available to the hypervisor nodes

Warning: The datastore should only be usable by the administrators. Letting users create images in this datastore
can cause security problems.

8.6.1 Frontend Setup

No addtional configuration is needed

8.6.2 Node Setup

The nodes need to meet the following requirements: * The devices you want to attach to a VM should be accessible
by the hypervisor. * Qemu needs to be compiled with Libiscsi support.

iSCSI CHAP Authentication

In order to use CHAP authentication, you will need to create a libvirt secret in all the hypervisors. Follow this Libvirt
Secret XML format guide to register the secret. Take this into consideration:

• incominguser field on the iSCSI authentication file should match the Datastore’s ISCSI_USER parameter.

• <target> field in the secret XML document will contain the ISCSI_USAGE paremeter.

• Do this in all the hypervisors.

8.6. iSCSI - Libvirt Datastore 132

https://libvirt.org/formatsecret.html#iSCSIUsageType
https://libvirt.org/formatsecret.html#iSCSIUsageType

OpenNebula 5.2 Deployment guide, Release 5.2.1

8.6.3 OpenNebula Configuration

Once the storage is setup, the OpenNebula configuration comprises two steps:

• Create a System Datastore

• Create an Image Datastore

Create a System Datastore

The RDM Datastore can work with the following System Datastores:

• Filesystem, shared transfer mode

• Filesystem, ssh transfer mode

Please refer to the Filesystem Datastore section for more details. Note that the System Datastore is only used for
volatile disks and context devices.

Create an Image Datastore

To create an Image Datastore you just need to define the name, and set the following:

Attribute Description
NAME The name of the datastore
TYPE IMAGE_DS
DS_MAD iscsi
TM_MAD iscsi
DISK_TYPE ISCSI
ISCSI_HOST iSCSI Host. Example: host or host:port.

If you need to use CHAP authentication (optional) add the following attributes to the datastore:

Attribute Description
ISCSI_USAGE Usage of the secret with the CHAP Auth string.
ISCSI_USER user the iSCSI CHAP authentication.

An example of datastore:

> cat iscsi.ds
NAME = iscsi

DISK_TYPE = "ISCSI"

DS_MAD = "iscsi"
TM_MAD = "iscsi"

ISCSI_HOST = "the_iscsi_host"
ISCSI_USER = "the_iscsi_user"
ISCSI_USAGE = "the_iscsi_usage"

> onedatastore create iscsi.ds
ID: 101

Warning: Images created in this datastore should be persistent. Making the images non persistent allows more
than one VM use this device and will probably cause problems and data corruption.

8.6. iSCSI - Libvirt Datastore 133

OpenNebula 5.2 Deployment guide, Release 5.2.1

8.6.4 Datastore Usage

New images can be added as any other image specifying the path. If you are using the CLI do not use the shorthand
parameters as the CLI check if the file exists and the device most provably won’t exist in the frontend.

As an example here is an image template to add a node disk iqn.1992-01.com.
example:storage:diskarrays-sn-a8675309:

NAME = iscsi_device
PATH = iqn.1992-01.com.example:storage:diskarrays-sn-a8675309
PERSISTENT = YES

Warning: As this datastore does is just a container for existing devices images does not take any size from it. All
devices registered will render size of 0 and the overall devices datastore will show up with 1MB of available space

Note: You may override the any of the following: ISCSI_HOST, ISCSI_USER`, ISCSI_USAGE and
ISCSI_IQN parameters in the image template. These overridden parameters will come into effect for new Virtual
Machines.

Here is an example of an iSCSI LUN template that uses the iSCSI transfer manager.

oneadmin@onedv:~/exampletemplates$ more iscsiimage.tpl
NAME=iscsi_device_with_lun
PATH=iqn.2014.01.192.168.50.61:test:7cd2cc1e/0
ISCSI_HOST=192.168.50.61
PERSISTENT=YES

Note the explicit “/0” at the end of the IQN target path. This is the iSCSI LUN ID.

8.7 The Kernels & Files Datastore

The Files Datastore lets you store plain files to be used as VM kernels, ramdisks or context files. The Files Datastore
does not expose any special storage mechanism but a simple and secure way to use files within VM templates. There
is a Files Datastore (datastore ID: 2) ready to be used in OpenNebula.

8.7.1 Requirements

There are no special requirements or software dependencies to use the Files Datastore. The recommended drivers
make use of standard filesystem utils (cp, ln, mv, tar, mkfs...) that should be installed in your system.

8.7.2 Configuration

Most of the configuration considerations used for disk images datastores do apply to the Files Datastore (e.g. driver
setup, cluster assignment, datastore management...).

The specific attributes for this datastore driver are listed in the following table, you will also need to complete with the
common datastore attributes:

8.7. The Kernels & Files Datastore 134

OpenNebula 5.2 Deployment guide, Release 5.2.1

Attribute Description
TYPE Use FILE_DS to setup a Files datastore
DS_MAD The DS type, use fs to use the file-based drivers
TM_MAD Transfer drivers for the datastore, use ssh to transfer the files

For example, the following illustrates the creation of File Datastore.

> cat kernels_ds.conf
NAME = kernels
DS_MAD = fs
TM_MAD = ssh
TYPE = FILE_DS
SAFE_DIRS = /var/tmp/files

> onedatastore create kernels_ds.conf
ID: 100

> onedatastore list
ID NAME CLUSTER IMAGES TYPE DS TM
0 system - 0 sys - dummy
1 default - 0 img dummy dummy
2 files - 0 fil fs ssh

100 kernels - 0 fil fs ssh

The DS and TM MAD can be changed later using the onedatastore update command. You can check more
details of the datastore by issuing the onedatastore show command.

8.7.3 Host Configuration

The recommended ssh driver for the File Datastore does not need any special configuration for the hosts. Just make
sure that there is enough space under $DATASTORE_LOCATION to hold the VM files in the front-end and hosts.

For more details refer to the Filesystem Datastore guide, as the same configuration guidelines applies.

8.7. The Kernels & Files Datastore 135

CHAPTER

NINE

OPEN CLOUD NETWORKING SETUP

9.1 Overview

When a new Virtual Machine is launched, OpenNebula will connect its network interfaces (defined by NIC attribute)
to hypervisor physical devices as defined in the Virtual Network. This will allow the VM to have access to different
networks, public or private.

OpenNebula supports four different networking modes:

• Bridged. The Virtual Machine is directly attached to an existing bridge in the hypervisor. This mode can be
configured to use security groups and network isolation.

• VLAN. Virtual Networks are implemented through 802.1Q VLAN tagging.

• VXLAN. Virtual Networks implements VLANs using the VXLAN protocol that relies on a UDP encapsulation
and IP multicast.

• Open vSwitch. Similar to the VLAN mode but using an openvswitch instead of a Linux bridge.

When you create a new network you will need to add the attribute VN_MAD to the template, specifying which of the
above networking modes you want to use.

Note: Security Groups are not supported by the Open vSwitch mode.

Finally, the networking stack of OpenNebula can be integrated with an external IP address manager (IPAM). To do so,
you need to develop the needed glue, for more details refer to the IPAM driver guide.

9.1.1 How Should I Read This Chapter

Before reading this chapter make sure you have read the Open Cloud Storage chapter.

Start by reading the common Node Setup section to learn how to configure your hosts, and then proceed to the specific
section for the networking mode that you are interested in.

After reading this chapter you can complete your OpenNebula installation by optionally enabling an External Authen-
tication or configuring Sunstone. Otherwise you are ready to Operate your Cloud.

9.1.2 Hypervisor Compatibility

This chapter applies only to KVM.

136

OpenNebula 5.2 Deployment guide, Release 5.2.1

9.2 Node Setup

Todo

• Architect

• KVM

This guide includes specific node setup steps to enable each network mode. You only need to apply the corresponding
section to the select mode.

9.2.1 Bridged Networking Mode

Requirements

• The OpenNebula node packages has been installed, see the KVM node installation section for more details.

• By default, network isolation is provided through ebtables, this package needs to be installed in the nodes.

Configuration

• Create a linux bridge for each network that would be expose to Virtual Machines. Use the same name in all the
nodes.

• Add the physical network interface to the bridge.

For example, a node with two networks one for public IP addresses (attached to eth0) and another one for private
traffic (NIC eth1) should have two bridges:

$ brctl show
bridge name bridge id STP enabled interfaces
br0 8000.001e682f02ac no eth0
br1 8000.001e682f02ad no eth1

Note: It is recommended that this configuration is made persistent. Please refer to the network configuration guide of
your system to do so.

9.2.2 VLAN Networking Mode

Requirements

• The OpenNebula node packages has been installed, see the KVM node installation section for more details.

• The 8021q module must be loaded in the kernel.

• A network switch capable of forwarding VLAN tagged traffic. The physical switch ports should be VLAN
trunks.

Configuration

No additional configuration is needed.

9.2. Node Setup 137

OpenNebula 5.2 Deployment guide, Release 5.2.1

9.2.3 VXLAN Networking Mode

Requirements

• The OpenNebula node packages has been installed, see the KVM node installation section for more details.

• The node must run a Linux kernel (>3.7.0) that natively supports the VXLAN protocol and the associated
iproute2 package.

• When all the nodes are connected to the same broadcasting domain be sure that the multicast traffic is not filtered
by any iptable rule in the nodes. Note that if the multicast traffic needs to traverse routers a multicast protocol
like IGMP needs to be configured in your network.

Configuration

No additional configuration is needed.

9.2.4 Open vSwitch Networking Mode

Requirements

• The OpenNebula node packages has been installed, see the KVM node installation section for more details.

• You need to install Open vSwitch on each node. Please refer to the Open vSwitch documentation to do so.

For example, a node that forwards Virtual Networks traffic through the enp0s8 network interface should create an
openvswitch like:

ovs-vsctl show
c61ba96f-fc11-4db9-9636-408e763f529e

Bridge "ovsbr0"
Port "ovsbr0"

Interface "ovsbr0"
type: internal

Port "enp0s8"
Interface "enp0s8"

Configuration

• Create a openvswitch for each network that would be expose to Virtual Machines. Use the same name in all the
nodes.

• Add the physical network interface to the openvswitch.

Note: It is recommended that this configuration is made persistent. Please refer to the network configuration guide of
your system to do so.

9.3 Bridged Networking

This guide describes how to deploy Bridged networks. In this mode virtual machine traffic is directly bridged through
an existing Linux bridge in the nodes. Bridged networks can operate on three different modes depending on the

9.3. Bridged Networking 138

OpenNebula 5.2 Deployment guide, Release 5.2.1

additional traffic filtering made by OpenNebula:

• Dummy, no filtering is made

• Security Group, iptables rules are installed to implement security groups rules.

• ebtables VLAN, same as above plus additional ebtables rules to isolate (L2) each Virtual Networks.

9.3.1 Considerations & Limitations

The following needs to be considered regarding traffic isolation:

• In the Dummy and Security Group modes you can add tagged network interfaces to achieve network isolation.
This is the recommended deployment strategy in production environments in this mode.

• The ebtables VLAN mode is targeted to small environments without proper hardware support to implement
VLANS. Note that it is limited to /24 networks, and that IP addresses cannot overlap between Virtual Networks.
This mode is only recommended for testing purposes.

9.3.2 OpenNebula Configuration

No specific configuration is required for bridged networking

9.3.3 Defining a Bridged Network

To create a 802.1Q network include the following information:

Attribute Value Mandatory
VN_MAD

• dummy for the Dummy
Bridged mode

• fw for Bridged with Security
Groups

• ebtables for Bridged with
ebtables isolation

YES

BRIDGE Name of the linux bridge in the
nodes

YES

The following example defines Bridged network using the Security Groups mode:

NAME = "bridged_net"
VN_MAD = "fw"
BRIDGE = vbr1
...

9.3.4 ebtables VLAN Mode: default rules

This section lists the ebtables rules that are created, in case you need to debug your setup

Drop packets that don't match the network's MAC Address
-s ! <mac_address>/ff:ff:ff:ff:ff:0 -o <tap_device> -j DROP
Prevent MAC spoofing
-s ! <mac_address> -i <tap_device> -j DROP

9.3. Bridged Networking 139

OpenNebula 5.2 Deployment guide, Release 5.2.1

9.4 802.1Q VLAN Networks

This guide describes how to enable Network isolation provided through host-managed VLANs. This driver will create
a bridge for each OpenNebula Virtual Network and attach an VLAN tagged network interface to the bridge. This
mechanism is compliant with IEEE 802.1Q.

The VLAN id will be the same for every interface in a given network, automatically computed by OpenNebula. It may
also be forced by specifying an VLAN_ID parameter in the Virtual Network template.

9.4.1 OpenNebula Configuration

The VLAN_ID is calculated according to this configuration option of oned.conf:

VLAN_IDS: VLAN ID pool for the automatic VLAN_ID assigment. This pool
is for 802.1Q networks (Open vSwitch and 802.1Q drivers). The driver
will try first to allocate VLAN_IDS[START] + VNET_ID
start: First VLAN_ID to use
reserved: Comma separated list of VLAN_IDs or ranges. Two numbers
separated by a colon indicate a range.

VLAN_IDS = [
START = "2",
RESERVED = "0, 1, 4095"

]

By modifying that parameter you can reserve some VLANs so they aren’t assigned to a Virtual Network. You can also
define the first VLAN_ID. When a new isolated network is created, OpenNebula will find a free VLAN_ID from the
VLAN pool. This pool is global, and it’s also shared with the Open vSwitch network mode.

The following configuration attributes can be adjusted in /var/lib/one/remotes/vnm/
OpenNebulaNetwork.conf:

Parameter Description
validate_vlan_id Set to true to check that no other vlans are connected to the bridge

9.4.2 Defining a 802.1Q Network

To create a 802.1Q network include the following information:

Attribute Value Mandatory
VN_MAD 802.1Q YES
PHYDEV Name of the physical network device that will be attached to

the bridge.
YES

BRIDGE Name of the linux bridge, defaults to onebr<net_id> or
onebr.<vlan_id>

NO

VLAN_ID The VLAN ID, will be generated if not defined and
AUTOMATIC_VLAN_ID is set to YES

YES (unless
AUTOMATIC_VLAN_ID)

AUTO-
MATIC_VLAN_ID

Mandatory and must be set to YES if VLAN_ID hasn’t been
defined

YES (unless VLAN_ID)

MTU The MTU for the tagged interface and bridge NO

The following example defines a 802.1Q network

NAME = "hmnet"
VN_MAD = "802.1Q"

9.4. 802.1Q VLAN Networks 140

http://en.wikipedia.org/wiki/IEEE_802.1Q

OpenNebula 5.2 Deployment guide, Release 5.2.1

PHYDEV = "eth0"
VLAN_ID = 50 # optional. If not setting VLAN_ID set AUTOMATIC_VLAN_ID = "YES"
BRIDGE = "brhm" # optional

In this scenario, the driver will check for the existence of the brhm bridge. If it doesn’t exist it will be created. eth0
will be tagged (eth0.50) and attached to brhm (unless it’s already attached).

9.5 VXLAN Networks

This guide describes how to enable Network isolation provided through the VXLAN encapsulation protocol. This
driver will create a bridge for each OpenNebula Virtual Network and attach a VXLAN tagged network interface to the
bridge.

The VLAN id will be the same for every interface in a given network, calculated automatically by OpenNebula. It
may also be forced by specifying an VLAN_ID parameter in the Virtual Network template.

Additionally each VLAN has associated a multicast address to encapsulate L2 broadcast and multicast traffic. This
address is assigned by default to the 239.0.0.0/8 range as defined by RFC 2365 (Administratively Scoped IP Multicast).
In particular the multicast address is obtained by adding the VLAN_ID to the 239.0.0.0/8 base address.

9.5.1 Considerations & Limitations

This driver works with the default UDP server port 8472.

VXLAN traffic is forwarded to a physical device, this device can be set to be a VLAN tagged interface, but in that
case you must make sure that the tagged interface is manually created first in all the hosts.

9.5.2 OpenNebula Configuration

It is possible specify the start VLAN ID by configuring /etc/one/oned.conf:

VXLAN_IDS: Automatic VXLAN Network ID (VNI) assigment. This is used
for vxlan networks.
start: First VNI to use

VXLAN_IDS = [
START = "2"

]

The following configuration attributes can be adjusted in /var/lib/one/remotes/vnm/
OpenNebulaNetwork.conf:

Parameter Description
vxlan_mc Base multicast address for each VLAN. The multicas sddress is vxlan_mc + vlan_id
vxlan_ttl Time To Live (TTL) should be > 1 in routed multicast networks (IGMP)
validate_vlan_id Set to true to check that no other vlans are connected to the bridge

9.5.3 Defining a VXLAN Network

To create a VXLAN network include the following information:

9.5. VXLAN Networks 141

OpenNebula 5.2 Deployment guide, Release 5.2.1

Attribute Value Mandatory
VN_MAD vxlan YES
PHYDEV Name of the physical network device that will be attached to the bridge. YES
BRIDGE Name of the linux bridge, defaults to onebr<net_id> or onebr.<vlan_id> NO
VLAN_ID The VLAN ID, will be generated if not defined NO
MTU The MTU for the tagged interface and bridge NO

The following example defines a VXLAN network

NAME = "vxlan_net"
VN_MAD = "vxlan"
PHYDEV = "eth0"
VLAN_ID = 50 # optional
BRIDGE = "vxlan50" # optional
...

In this scenario, the driver will check for the existence of the vxlan50 bridge. If it doesn’t exist it will be created.
eth0 will be tagged (eth0.50) and attached to vxlan50 (unless it’s already attached). Note that eth0 can be a
802.1Q tagged interface if you want to isolate the OpenNebula VXLAN traffic.

9.6 Open vSwitch Networks

This guide describes how to use the Open vSwitch network drives. They provide network isolation using VLANs
by tagging ports and basic network filtering using OpenFlow. Other traffic attributes that may be configured through
Open vSwitch are not modified.

The VLAN id will be the same for every interface in a given network, calculated automatically by OpenNebula. It
may also be forced by specifying an VLAN_ID parameter in the Virtual Network template.

Warning: This driver is not compatible with Security Groups.

9.6.1 OpenNebula Configuration

The VLAN_ID is calculated according to this configuration option of oned.conf:

VLAN_IDS: VLAN ID pool for the automatic VLAN_ID assigment. This pool
is for 802.1Q networks (Open vSwitch and 802.1Q drivers). The driver
will try first to allocate VLAN_IDS[START] + VNET_ID
start: First VLAN_ID to use
reserved: Comma separated list of VLAN_IDs or ranges. Two numbers
separated by a colon indicate a range.

VLAN_IDS = [
START = "2",
RESERVED = "0, 1, 4095"

]

By modifying that parameter you can reserve some VLANs so they aren’t assigned to a Virtual Network. You can also
define the first VLAN_ID. When a new isolated network is created, OpenNebula will find a free VLAN_ID from the
VLAN pool. This pool is global, and it’s also shared with the 802.1Q VLAN network mode.

The following configuration attributes can be adjusted in /var/lib/one/remotes/vnm/
OpenNebulaNetwork.conf:

9.6. Open vSwitch Networks 142

http://openvswitch.org/

OpenNebula 5.2 Deployment guide, Release 5.2.1

Parameter Description
arp_cache_poisoning Enable ARP Cache Poisoning Prevention Rules.

Note: Remember to run onehost sync to deploy the file to all the nodes.

9.6.2 Defining an Open vSwitch Network

To create an Open vSwitch network, include the following information:

Attribute Value Mandatory
VN_MAD ovswitch YES
BRIDGE Name of the Open vSwitch switch to use YES
VLAN_ID The VLAN ID, will be generated if not defined NO

The following example defines an Open vSwitch network

NAME = "ovswitch_net"
VN_MAD = "ovswitch"
BRIDGE = vbr1
VLAN_ID = 50 # optional
...

Multiple VLANs (VLAN trunking)

VLAN trunking is also supported by adding the following tag to the NIC element in the VM template or to the virtual
network template:

• VLAN_TAGGED_ID: Specify a range of VLANs to tag, for example: 1,10,30,32.

9.6.3 OpenFlow Rules

This section lists de default openflow rules installed in the open vswitch.

Mac-spoofing

These rules prevent any traffic to come out of the port if the MAC address has changed.

in_port=<PORT>,dl_src=<MAC>,priority=40000,actions=normal
in_port=<PORT>,priority=39000,actions=normal

IP hijacking

These rules prevent any traffic to come out of the port for IPv4 if an IP address is not configured for a VM

in_port=<PORT>,arp,dl_src=<MAC>priority=45000,actions=drop
in_port=<PORT>,arp,dl_src=<MAC>,nw_src=<IP>,priority=46000,actions=normal

9.6. Open vSwitch Networks 143

OpenNebula 5.2 Deployment guide, Release 5.2.1

Black ports (one rule per port)

tcp,dl_dst=<MAC>,tp_dst=<PORT>,actions=drop

ICMP Drop

icmp,dl_dst=<MAC>,actions=drop

9.6. Open vSwitch Networks 144

CHAPTER

TEN

REFERENCES

10.1 Overview

This Chapter covers references that apply to the configuration of OpenNebula to interact smoothly and efficiently
with other datacenter components, as well as information on where are the log files, the database tool, and all the
configuration parameters of the OpenNebula core daemon.

10.1.1 How Should I Read This Chapter

The oned.conf file is the main OpenNebula configuration file, and it is essential to tweak the performance and be-
havior of your OpenNebula installation. The section Large Deployments contains more helpful pointers to tune the
OpenNebula performance.

Read Logging and Debugging for a complete reference on how to use log files, and how to adjust the verbosity and
log subsystem.

For database maintenance operations, use the command line tool onedb. It can be used to get information from an
OpenNebula database, upgrade it, or fix inconsistency problems.

10.1.2 Hypervisor Compatibility

This chapter applies to all the hypervisors.

10.2 ONED Configuration

The OpenNebula daemon oned manages the cluster nodes, virtual networks, virtual machines, users, groups and
storage datastores. The configuration file for the daemon is called oned.conf and it is placed inside the /etc/one
directory. In this reference document we describe all the format and options that can be specified in oned.conf.

10.2.1 Daemon Configuration Attributes

• MANAGER_TIMER : Time in seconds the core uses to evaluate periodical functions. MONITOR-
ING_INTERVAL cannot have a smaller value than MANAGER_TIMER.

• MONITORING_INTERVAL : Time in seconds between each monitorization.

• MONITORING_THREADS : Max. number of threads used to process monitor messages

• HOST_PER_INTERVAL: Number of hosts monitored in each interval.

145

OpenNebula 5.2 Deployment guide, Release 5.2.1

• HOST_MONITORING_EXPIRATION_TIME: Time, in seconds, to expire monitoring information. Use 0 to
disable HOST monitoring recording.

• VM_INDIVIDUAL_MONITORING: VM monitoring information is obtained along with the host information.
For some custom monitor drivers you may need activate the individual VM monitoring process.

• VM_PER_INTERVAL: Number of VMs monitored in each interval.

• VM_MONITORING_EXPIRATION_TIME: Time, in seconds, to expire monitoring information. Use 0 to dis-
able VM monitoring recording.

• SCRIPTS_REMOTE_DIR: Remote path to store the monitoring and VM management script.

• PORT : Port where oned will listen for xml-rpc calls.

• LISTEN_ADDRESS: Host IP to listen on for xmlrpc calls (default: all IPs).

• DB : Vector of configuration attributes for the database back-end.

– backend : Set to sqlite or mysql. Please visit the MySQL configuration guide for more information.

– server (MySQL only): Host name or an IP address for the MySQL server.

– user (MySQL only): MySQL user’s login ID.

– passwd (MySQL only): MySQL user’s password.

– db_name (MySQL only): MySQL database name.

• VNC_PORTS : VNC port pool for automatic VNC port assignment, if possible the port will be set to START +
VMID. Refer to the VM template reference for further information:

– start: first port to assign

– reserved: comma separated list of reserved ports or ranges. Two numbers separated by a colon indicate
a range.

• VM_SUBMIT_ON_HOLD : Forces VMs to be created on hold state instead of pending. Values: YES or NO.

• LOG : Configure the logging system

– SYSTEM : Can be either file (default), syslog or std

– DEBUG_LEVEL : Sets the level of verbosity of the log messages. Possible values are:

DEBUG_LEVEL Meaning
0 ERROR
1 WARNING
2 INFO
3 DEBUG

Example of this section:

#***
Daemon configuration attributes
#***

LOG = [
SYSTEM = "file",
DEBUG_LEVEL = 3

]

#MANAGER_TIMER = 15

MONITORING_INTERVAL = 60

10.2. ONED Configuration 146

OpenNebula 5.2 Deployment guide, Release 5.2.1

MONITORING_THREADS = 50

#HOST_PER_INTERVAL = 15
#HOST_MONITORING_EXPIRATION_TIME = 43200

#VM_INDIVIDUAL_MONITORING = "no"
#VM_PER_INTERVAL = 5
#VM_MONITORING_EXPIRATION_TIME = 14400

SCRIPTS_REMOTE_DIR=/var/tmp/one

PORT = 2633

LISTEN_ADDRESS = "0.0.0.0"

DB = [BACKEND = "sqlite"]

Sample configuration for MySQL
DB = [BACKEND = "mysql",
SERVER = "localhost",
PORT = 0,
USER = "oneadmin",
PASSWD = "oneadmin",
DB_NAME = "opennebula"]

VNC_PORTS = [
START = 5900

RESERVED = "6800, 6801, 9869"
]

#VM_SUBMIT_ON_HOLD = "NO"

10.2.2 Federation Configuration Attributes

Control the federation capabilities of oned. Operation in a federated setup requires a special DB configuration.

• FEDERATION : Federation attributes.

– MODE : Operation mode of this oned.

* STANDALONE: not federated. This is the default operational mode

* MASTER: this oned is the master zone of the federation

* SLAVE: this oned is a slave zone

• ZONE_ID : The zone ID as returned by onezone command.

• MASTER_ONED : The xml-rpc endpoint of the master oned, e.g. http://master.one.org:2633/RPC2

#***
Federation configuration attributes
#***

FEDERATION = [
MODE = "STANDALONE",
ZONE_ID = 0,
MASTER_ONED = ""

]

10.2. ONED Configuration 147

http://master.one.org:2633/RPC2

OpenNebula 5.2 Deployment guide, Release 5.2.1

10.2.3 Default Showback Cost

The following attributes define the default cost for Virtual Machines that don’t have a CPU, MEMORY or DISK cost.
This is used by the oneshowback calculate method.

#***
Default showback cost
#***

DEFAULT_COST = [
CPU_COST = 0,
MEMORY_COST = 0,
DISK_COST = 0

]

10.2.4 XML-RPC Server Configuration

• MAX_CONN: Maximum number of simultaneous TCP connections the server will maintain

• MAX_CONN_BACKLOG: Maximum number of TCP connections the operating system will accept on the server’s
behalf without the server accepting them from the operating system

• KEEPALIVE_TIMEOUT: Maximum time in seconds that the server allows a connection to be open between
RPCs

• KEEPALIVE_MAX_CONN: Maximum number of RPCs that the server will execute on a single connection

• TIMEOUT: Maximum time in seconds the server will wait for the client to do anything while processing an
RPC. This timeout will be also used when proxy calls to the master in a federation.

• RPC_LOG: Create a separated log file for xml-rpc requests, in /var/log/one/one_xmlrpc.log.

• MESSAGE_SIZE: Buffer size in bytes for XML-RPC responses.

• LOG_CALL_FORMAT: Format string to log XML-RPC calls. Interpreted strings:

– %i – request id

– %m – method name

– %u – user id

– %U – user name

– %l – param list

– %p – user password

– %g – group id

– %G – group name

– %a – auth token

– %% – %

#***
XML-RPC server configuration
#***

#MAX_CONN = 15
#MAX_CONN_BACKLOG = 15

10.2. ONED Configuration 148

OpenNebula 5.2 Deployment guide, Release 5.2.1

#KEEPALIVE_TIMEOUT = 15
#KEEPALIVE_MAX_CONN = 30
#TIMEOUT = 15
#RPC_LOG = NO
#MESSAGE_SIZE = 1073741824
#LOG_CALL_FORMAT = "Req:%i UID:%u %m invoked %l"

Warning: This functionality is only available when compiled with xmlrpc-c libraires >= 1.32. Currently only the
packages distributed by OpenNebula are linked with this library.

10.2.5 Virtual Networks

• NETWORK_SIZE: Here you can define the default size for the virtual networks

• MAC_PREFIX: Default MAC prefix to be used to create the auto-generated MAC addresses is defined here (this
can be overwritten by the Virtual Network template)

• VLAN_IDS: VLAN ID pool for the automatic VLAN_ID assignment. This pool is for 802.1Q networks (Open
vSwitch and 802.1Q drivers). The driver will try first to allocate VLAN_IDS[START] + VNET_ID

– start: First VLAN_ID to use

– reserved: Comma separated list of VLAN_IDs or ranges. Two numbers separated by a colon indicate
a range.

• VXLAN_IDS: Automatic VXLAN Network ID (VNI) assignment. This is used for vxlan networks.

– start: First VNI to use

–
Note: reserved is not supported by this pool

Sample configuration:

#***
Physical Networks configuration
#***

NETWORK_SIZE = 254

MAC_PREFIX = "02:00"

VLAN_IDS = [
START = "2",
RESERVED = "0, 1, 4095"

]

VXLAN_IDS = [
START = "2"

]

10.2. ONED Configuration 149

OpenNebula 5.2 Deployment guide, Release 5.2.1

10.2.6 Datastores

The Storage Subsystem allows users to set up images, which can be operative systems or data, to be used in Virtual
Machines easily. These images can be used by several Virtual Machines simultaneously, and also shared with other
users.

Here you can configure the default values for the Datastores and Image templates. You have more information about
the templates syntax here.

• DATASTORE_LOCATION: Path for Datastores. It IS the same for all the hosts and front-end. It defaults to
/var/lib/one/datastores (in self-contained mode defaults to $ONE_LOCATION/var/datastores). Each datastore
has its own directory (called BASE_PATH) in the form: $DATASTORE_LOCATION/<datastore_id>.
You can symlink this directory to any other path if needed. BASE_PATH is generated from this attribute each
time oned is started.

• DATASTORE_CAPACITY_CHECK: Checks that there is enough capacity before creating a new image. Defaults
to Yes

• DEFAULT_IMAGE_TYPE : Default value for TYPE field when it is omitted in a template. Values accepted are:

– OS: Image file holding an operating system

– CDROM: Image file holding a CDROM

– DATABLOCK: Image file holding a datablock, created as an empty block

• DEFAULT_DEVICE_PREFIX : Default value for DEV_PREFIX field when it is omitted in a template. The
missing DEV_PREFIX attribute is filled when Images are created, so changing this prefix won’t affect existing
Images. It can be set to:

Prefix Device type
hd IDE
sd SCSI
vd KVM virtual disk

• DEFAULT_CDROM_DEVICE_PREFIX: Same as above but for CDROM devices.

More information on the image repository can be found in the Managing Virtual Machine Images guide.

Sample configuration:

#***
Image Repository Configuration
#***
#DATASTORE_LOCATION = /var/lib/one/datastores

DATASTORE_CAPACITY_CHECK = "yes"

DEFAULT_IMAGE_TYPE = "OS"
DEFAULT_DEVICE_PREFIX = "hd"

DEFAULT_CDROM_DEVICE_PREFIX = "hd"

10.2.7 Information Collector

This driver CANNOT BE ASSIGNED TO A HOST, and needs to be used with KVM drivers. Options that can be set:

• -a: Address to bind the collectd socket (default 0.0.0.0)

• -p: UDP port to listen for monitor information (default 4124)

10.2. ONED Configuration 150

OpenNebula 5.2 Deployment guide, Release 5.2.1

• -f: Interval in seconds to flush collected information (default 5)

• -t: Number of threads for the server (default 50)

• -i: Time in seconds of the monitorization push cycle. This parameter must be smaller than MONITOR-
ING_INTERVAL, otherwise push monitorization will not be effective.

Sample configuration:

IM_MAD = [
name = "collectd",
executable = "collectd",
arguments = "-p 4124 -f 5 -t 50 -i 20"]

10.2.8 Information Drivers

The information drivers are used to gather information from the cluster nodes, and they depend on the virtualizer you
are using. You can define more than one information manager but make sure it has different names. To define it, the
following needs to be set:

• name: name for this information driver.

• executable: path of the information driver executable, can be an absolute path or relative to /usr/lib/one/
mads/

• arguments: for the driver executable, usually a probe configuration file, can be an absolute path or relative to
/etc/one/.

For more information on configuring the information and monitoring system and hints to extend it please check the
information driver configuration guide.

Sample configuration:

#---
KVM UDP-push Information Driver Manager Configuration
-r number of retries when monitoring a host
-t number of threads, i.e. number of hosts monitored at the same time
#---
IM_MAD = [

NAME = "kvm",
SUNSTONE_NAME = "KVM",
EXECUTABLE = "one_im_ssh",
ARGUMENTS = "-r 3 -t 15 kvm"]

#---

10.2.9 Virtualization Drivers

The virtualization drivers are used to create, control and monitor VMs on the hosts. You can define more than one
virtualization driver (e.g. you have different virtualizers in several hosts) but make sure they have different names. To
define it, the following needs to be set:

• name: name of the virtualization driver.

• executable: path of the virtualization driver executable, can be an absolute path or relative to /usr/lib/
one/mads/

• arguments: for the driver executable

• type: driver type, supported drivers: xen, kvm or xml

10.2. ONED Configuration 151

OpenNebula 5.2 Deployment guide, Release 5.2.1

• default: default values and configuration parameters for the driver, can be an absolute path or relative to /etc/
one/

• keep_snapshots: do not remove snapshots on power on/off cycles and live migrations if the hypervisor supports
that.

• imported_vms_actions : comma-separated list of actions supported for imported vms. The available actions
are:

– migrate

– live-migrate

– terminate

– terminate-hard

– undeploy

– undeploy-hard

– hold

– release

– stop

– suspend

– resume

– delete

– delete-recreate

– reboot

– reboot-hard

– resched

– unresched

– poweroff

– poweroff-hard

– disk-attach

– disk-detach

– nic-attach

– nic-detach

– snap-create

– snap-delete

For more information on configuring and setting up the Virtual Machine Manager Driver please check the section that
suits you:

• KVM Driver

• vCenter Driver

Sample configuration:

10.2. ONED Configuration 152

OpenNebula 5.2 Deployment guide, Release 5.2.1

#---
Virtualization Driver Configuration
#---

VM_MAD = [
NAME = "kvm",
SUNSTONE_NAME = "KVM",
EXECUTABLE = "one_vmm_exec",
ARGUMENTS = "-t 15 -r 0 kvm",
DEFAULT = "vmm_exec/vmm_exec_kvm.conf",
TYPE = "kvm",
KEEP_SNAPSHOTS = "no",
IMPORTED_VMS_ACTIONS = "terminate, terminate-hard, hold, release, suspend,

resume, delete, reboot, reboot-hard, resched, unresched, disk-attach,
disk-detach, nic-attach, nic-detach, snap-create, snap-delete"

]

10.2.10 Transfer Driver

The transfer drivers are used to transfer, clone, remove and create VM images. The default TM_MAD driver includes
plugins for all supported storage modes. You may need to modify the TM_MAD to add custom plugins.

• executable: path of the transfer driver executable, can be an absolute path or relative to /usr/lib/one/
mads/

• arguments: for the driver executable:

– -t: number of threads, i.e. number of transfers made at the same time

– -d: list of transfer drivers separated by commas, if not defined all the drivers available will be enabled

For more information on configuring different storage alternatives please check the storage configuration guide.

Sample configuration:

#---
Transfer Manager Driver Configuration
#---

TM_MAD = [
EXECUTABLE = "one_tm",
ARGUMENTS = "-t 15 -d dummy,lvm,shared,fs_lvm,qcow2,ssh,ceph,dev,vcenter,iscsi_

→˓libvirt"
]

The configuration for each driver is defined in the TM_MAD_CONF section. These values are used when creating a
new datastore and should not be modified since they define the datastore behavior.

• name : name of the transfer driver, listed in the -d option of the TM_MAD section

• ln_target : determines how the persistent images will be cloned when a new VM is instantiated.

– NONE: The image will be linked and no more storage capacity will be used

– SELF: The image will be cloned in the Images datastore

– SYSTEM: The image will be cloned in the System datastore

• clone_target : determines how the non persistent images will be cloned when a new VM is instantiated.

– NONE: The image will be linked and no more storage capacity will be used

10.2. ONED Configuration 153

OpenNebula 5.2 Deployment guide, Release 5.2.1

– SELF: The image will be cloned in the Images datastore

– SYSTEM: The image will be cloned in the System datastore

• shared : determines if the storage holding the system datastore is shared among the different hosts or not. Valid
values: yes or no.

• ds_migrate: set if system datastore migrations are allowed for this TM. Only useful for system datastore TMs.

Sample configuration:

TM_MAD_CONF = [
name = "lvm",
ln_target = "NONE",
clone_target= "SELF",
shared = "yes"

]

TM_MAD_CONF = [
name = "shared",
ln_target = "NONE",
clone_target= "SYSTEM",
shared = "yes",
ds_migrate = "yes"

]

10.2.11 Datastore Driver

The Datastore Driver defines a set of scripts to manage the storage backend.

• executable: path of the transfer driver executable, can be an absolute path or relative to /usr/lib/one/
mads/

• arguments: for the driver executable

– -t number of threads, i.e. number of repo operations at the same time

– -d datastore mads separated by commas

– -s system datastore tm drivers, used to monitor shared system ds

Sample configuration:

DATASTORE_MAD = [
EXECUTABLE = "one_datastore",
ARGUMENTS = "-t 15 -d dummy,fs,lvm,ceph,dev,iscsi_libvirt,vcenter -s shared,ssh,

→˓ceph,fs_lvm"
]

For more information on this Driver and how to customize it, please visit its reference guide.

10.2.12 Marketplace Driver Configuration

Drivers to manage different marketplaces, specialized for the storage back-end

• executable: path of the transfer driver executable, can be an absolute path or relative to /usr/lib/one/mads/

• arguments : for the driver executable

– -t number of threads, i.e. number of repo operations at the same time

10.2. ONED Configuration 154

OpenNebula 5.2 Deployment guide, Release 5.2.1

– -m marketplace mads separated by commas

Sample configuration:

MARKET_MAD = [
EXECUTABLE = "one_market",
ARGUMENTS = "-t 15 -m http,s3,one"

]

10.2.13 Hook System

Hooks in OpenNebula are programs (usually scripts) which execution is triggered by a change in state in Virtual
Machines or Hosts. The hooks can be executed either locally or remotely in the node where the VM or Host is
running. To configure the Hook System the following needs to be set in the OpenNebula configuration file:

• executable: path of the hook driver executable, can be an absolute path or relative to /usr/lib/one/mads/

• arguments : for the driver executable, can be an absolute path or relative to /etc/one/

Sample configuration:

HM_MAD = [
executable = "one_hm"]

Virtual Machine Hooks (VM_HOOK) defined by:

• name: for the hook, useful to track the hook (OPTIONAL).

• on: when the hook should be executed,

– CREATE, when the VM is created (onevm create)

– PROLOG, when the VM is in the prolog state

– RUNNING, after the VM is successfully booted

– UNKNOWN, when the VM is in the unknown state

– SHUTDOWN, after the VM is shutdown

– STOP, after the VM is stopped (including VM image transfers)

– DONE, after the VM is deleted or shutdown

– CUSTOM, user defined specific STATE and LCM_STATE combination of states to trigger the hook

• command: path can be absolute or relative to /usr/share/one/hooks

• arguments: for the hook. You can access to VM information with $

– $ID, the ID of the virtual machine

– $TEMPLATE, the VM template in xml and base64 encoded multiple

– PREV_STATE, the previous STATE of the Virtual Machine

– PREV_LCM_STATE, the previous LCM STATE of the Virtual Machine

• remote: values,

– YES, The hook is executed in the host where the VM was allocated

– NO, The hook is executed in the OpenNebula server (default)

10.2. ONED Configuration 155

OpenNebula 5.2 Deployment guide, Release 5.2.1

Host Hooks (HOST_HOOK) defined by:

• name: for the hook, useful to track the hook (OPTIONAL)

• on: when the hook should be executed,

– CREATE, when the Host is created (onehost create)

– ERROR, when the Host enters the error state

– DISABLE, when the Host is disabled

• command: path can be absolute or relative to /usr/share/one/hooks

• arguments: for the hook. You can use the following Host information:

– $ID, the ID of the host

– $TEMPLATE, the Host template in xml and base64 encoded

• remote: values,

– YES, The hook is executed in the host

– NO, The hook is executed in the OpenNebula server (default)

Sample configuration:

VM_HOOK = [
name = "advanced_hook",
on = "CUSTOM",
state = "ACTIVE",
lcm_state = "BOOT_UNKNOWN",
command = "log.rb",
arguments = "$ID $PREV_STATE $PREV_LCM_STATE"]

10.2.14 Auth Manager Configuration

• AUTH_MAD: The driver that will be used to authenticate and authorize OpenNebula requests. If not defined
OpenNebula will use the built-in auth policies

– executable: path of the auth driver executable, can be an absolute path or relative to /usr/lib/one/mads/

– authn: list of authentication modules separated by commas, if not defined all the modules available will
be enabled

– authz: list of authentication modules separated by commas

• SESSION_EXPIRATION_TIME: Time in seconds to keep an authenticated token as valid. During this time,
the driver is not used. Use 0 to disable session caching

• ENABLE_OTHER_PERMISSIONS: Whether or not to enable the permissions for ‘other’. Users in the
oneadmin group will still be able to change these permissions. Values: YES or NO

• DEFAULT_UMASK: Similar to Unix umask, sets the default resources permissions. Its format must be 3 octal
digits. For example a umask of 137 will set the new object’s permissions to 640 um- u-- ---

Sample configuration:

AUTH_MAD = [
executable = "one_auth_mad",
authn = "ssh,x509,ldap,server_cipher,server_x509"

]

10.2. ONED Configuration 156

OpenNebula 5.2 Deployment guide, Release 5.2.1

SESSION_EXPIRATION_TIME = 900

#ENABLE_OTHER_PERMISSIONS = "YES"

DEFAULT_UMASK = 177

The DEFAULT_AUTH can be used to point to the desired default authentication driver, for example ldap:

DEFAULT_AUTH = "ldap"

10.2.15 Restricted Attributes Configuration

Users outside the oneadmin group won’t be able to instantiate templates created by users outside the ‘’oneadmin”
group that include the attributes restricted by:

• VM_RESTRICTED_ATTR: Virtual Machine attribute to be restricted for users outside the ‘’oneadmin” group

• IMAGE_RESTRICTED_ATTR: Image attribute to be restricted for users outside the ‘’oneadmin” group

• VNET_RESTRICTED_ATTR: Virtual Network attribute to be restricted for users outside the ‘’oneadmin”
group when updating a reservation. These attributes are not considered for regular VNET creation.

If the VM template has been created by admins in the ‘’oneadmin” group, then users outside the ‘’oneadmin” group
can instantiate these templates.

Sample configuration:

VM_RESTRICTED_ATTR = "CONTEXT/FILES"
VM_RESTRICTED_ATTR = "NIC/MAC"
VM_RESTRICTED_ATTR = "NIC/VLAN_ID"
VM_RESTRICTED_ATTR = "NIC/BRIDGE"
VM_RESTRICTED_ATTR = "NIC_DEFAULT/MAC"
VM_RESTRICTED_ATTR = "NIC_DEFAULT/VLAN_ID"
VM_RESTRICTED_ATTR = "NIC_DEFAULT/BRIDGE"
VM_RESTRICTED_ATTR = "DISK/TOTAL_BYTES_SEC"
VM_RESTRICTED_ATTR = "DISK/READ_BYTES_SEC"
VM_RESTRICTED_ATTR = "DISK/WRITE_BYTES_SEC"
VM_RESTRICTED_ATTR = "DISK/TOTAL_IOPS_SEC"
VM_RESTRICTED_ATTR = "DISK/READ_IOPS_SEC"
VM_RESTRICTED_ATTR = "DISK/WRITE_IOPS_SEC"
#VM_RESTRICTED_ATTR = "DISK/SIZE"
VM_RESTRICTED_ATTR = "DISK/ORIGINAL_SIZE"
VM_RESTRICTED_ATTR = "CPU_COST"
VM_RESTRICTED_ATTR = "MEMORY_COST"
VM_RESTRICTED_ATTR = "DISK_COST"
VM_RESTRICTED_ATTR = "PCI"
VM_RESTRICTED_ATTR = "USER_INPUTS"

#VM_RESTRICTED_ATTR = "RANK"
#VM_RESTRICTED_ATTR = "SCHED_RANK"
#VM_RESTRICTED_ATTR = "REQUIREMENTS"
#VM_RESTRICTED_ATTR = "SCHED_REQUIREMENTS"

IMAGE_RESTRICTED_ATTR = "SOURCE"

VNET_RESTRICTED_ATTR = "VN_MAD"
VNET_RESTRICTED_ATTR = "PHYDEV"

10.2. ONED Configuration 157

OpenNebula 5.2 Deployment guide, Release 5.2.1

VNET_RESTRICTED_ATTR = "VLAN_ID"
VNET_RESTRICTED_ATTR = "BRIDGE"

VNET_RESTRICTED_ATTR = "AR/VN_MAD"
VNET_RESTRICTED_ATTR = "AR/PHYDEV"
VNET_RESTRICTED_ATTR = "AR/VLAN_ID"
VNET_RESTRICTED_ATTR = "AR/BRIDGE"

OpenNebula evaluates these attributes:

• on VM template instantiate (onetemplate instantiate)

• on VM create (onevm create)

• on VM attach nic (onevm nic-attach) (for example to forbid users to use NIC/MAC)

10.2.16 Inherited Attributes Configuration

The following attributes will be copied from the resource template to the instantiated VMs. More than one attribute
can be defined.

• INHERIT_IMAGE_ATTR: Attribute to be copied from the Image template to each VM/DISK.

• INHERIT_DATASTORE_ATTR: Attribute to be copied from the Datastore template to each VM/DISK.

• INHERIT_VNET_ATTR: Attribute to be copied from the Network template to each VM/NIC.

Sample configuration:

#INHERIT_IMAGE_ATTR = "EXAMPLE"
#INHERIT_IMAGE_ATTR = "SECOND_EXAMPLE"
#INHERIT_DATASTORE_ATTR = "COLOR"
#INHERIT_VNET_ATTR = "BANDWIDTH_THROTTLING"

INHERIT_DATASTORE_ATTR = "CEPH_HOST"
INHERIT_DATASTORE_ATTR = "CEPH_SECRET"
INHERIT_DATASTORE_ATTR = "CEPH_USER"
INHERIT_DATASTORE_ATTR = "CEPH_CONF"
INHERIT_DATASTORE_ATTR = "POOL_NAME"

INHERIT_DATASTORE_ATTR = "ISCSI_USER"
INHERIT_DATASTORE_ATTR = "ISCSI_USAGE"
INHERIT_DATASTORE_ATTR = "ISCSI_HOST"

INHERIT_IMAGE_ATTR = "ISCSI_USER"
INHERIT_IMAGE_ATTR = "ISCSI_USAGE"
INHERIT_IMAGE_ATTR = "ISCSI_HOST"
INHERIT_IMAGE_ATTR = "ISCSI_IQN"

INHERIT_DATASTORE_ATTR = "GLUSTER_HOST"
INHERIT_DATASTORE_ATTR = "GLUSTER_VOLUME"

INHERIT_DATASTORE_ATTR = "DISK_TYPE"
INHERIT_DATASTORE_ATTR = "ADAPTER_TYPE"

INHERIT_IMAGE_ATTR = "DISK_TYPE"
INHERIT_IMAGE_ATTR = "ADAPTER_TYPE"

INHERIT_VNET_ATTR = "VLAN_TAGGED_ID"

10.2. ONED Configuration 158

OpenNebula 5.2 Deployment guide, Release 5.2.1

INHERIT_VNET_ATTR = "FILTER_IP_SPOOFING"
INHERIT_VNET_ATTR = "FILTER_MAC_SPOOFING"
INHERIT_VNET_ATTR = "MTU"

10.2.17 OneGate Configuration

• ONEGATE_ENDPOINT: Endpoint where OneGate will be listening. Optional.

Sample configuration:

ONEGATE_ENDPOINT = "http://192.168.0.5:5030"

10.3 Logging & Debugging

OpenNebula provides logs for many resources. It supports three logging systems: file based logging systems, syslog
logging and logging to standard error stream.

In the case of file based logging, OpenNebula keeps separate log files for each active component, all of them stored in
/var/log/one. To help users and administrators find and solve problems, they can also access some of the error
messages from the CLI or the Sunstone GUI.

With syslog or standard error the logging strategy is almost identical, except that the logging message change slightly
their format following syslog logging conventions, and resource information.

10.3.1 Configure the Logging System

The Logging system can be changed in /etc/one/oned.conf , specifically under the LOG section. Two parameters can
be changed: SYSTEM, which is ‘syslog’, ‘file’ (default) or ‘std’, and the DEBUG_LEVEL is the logging verbosity.

For the scheduler the logging system can be changed in the exact same way. In this case the configuration is in
/etc/one/sched.conf.

10.3.2 Log Resources

There are different log resources corresponding to different OpenNebula components:

• ONE Daemon: The core component of OpenNebula dumps all its logging information onto /var/log/
one/oned.log. Its verbosity is regulated by DEBUG_LEVEL in /etc/one/oned.conf. By default the
one start up scripts will backup the last oned.log file using the current time, e.g. oned.log.20121011151807.
Alternatively, this resource can be logged to the syslog.

• Scheduler: All the scheduler information is collected into the /var/log/one/sched.log file. This re-
source can also be logged to the syslog.

• Virtual Machines: The information specific of the VM will be dumped in the log file /var/log/one/
<vmid>.log. All VMs controlled by OpenNebula have their folder, /var/lib/one/vms/<VID>, or to
the syslog/stderr if enabled. You can find the following information in it:

– Deployment description files : Stored in deployment.<EXECUTION>, where <EXECUTION> is the
sequence number in the execution history of the VM (deployment.0 for the first host, deployment.1 for the
second and so on).

10.3. Logging & Debugging 159

OpenNebula 5.2 Deployment guide, Release 5.2.1

– Transfer description files : Stored in transfer.<EXECUTION>.<OPERATION>, where
<EXECUTION> is the sequence number in the execution history of the VM, <OPERATION> is the stage
where the script was used, e.g. transfer.0.prolog, transfer.0.epilog, or transfer.1.cleanup.

• Drivers: Each driver can have activated its ONE_MAD_DEBUG variable in their RC files. If so, error informa-
tion will be dumped to /var/log/one/name-of-the-driver-executable.log; log information of
the drivers is in oned.log.

10.3.3 Logging Format

The structure of an OpenNebula message for a file based logging system is the following:

date [Z<zone_id>][module][log_level]: message body

In the case of syslog it follows the standard:

date hostname process[pid]: [Z<zone_id>][module][log_level]: message

Where the zone_id is the ID of the zone in the federation, 0 for single zone set ups, module is any of the internal
OpenNebula components: VMM, ReM, TM, etc. And the log_level is a single character indicating the log level: I for
info, D for debug, etc.

For the syslog, OpenNebula will also log the Virtual Machine events like this:

date hostname process[pid]: [VM id][Z<zone_id>][module][log_level]: message

And similarly for the stderr logging, for oned and VM events the format are:

date [Z<zone_id>][module][log_level]: message
date [VM id][Z<zone_id>][module][log_level]: message

10.3.4 Virtual Machine Errors

Virtual Machine errors can be checked by the owner or an administrator using the onevm show output:

$ onevm show 0
VIRTUAL MACHINE 0 INFORMATION
ID : 0
NAME : one-0
USER : oneadmin
GROUP : oneadmin
STATE : ACTIVE
LCM_STATE : PROLOG_FAILED
START TIME : 07/19 17:44:20
END TIME : 07/19 17:44:31
DEPLOY ID : -

VIRTUAL MACHINE MONITORING
NET_TX : 0
NET_RX : 0
USED MEMORY : 0
USED CPU : 0

VIRTUAL MACHINE TEMPLATE
CONTEXT=[

FILES=/tmp/some_file,

10.3. Logging & Debugging 160

OpenNebula 5.2 Deployment guide, Release 5.2.1

TARGET=hdb]
CPU=0.1
ERROR=[

MESSAGE="Error excuting image transfer script: Error copying /tmp/some_file to /var/
→˓lib/one/0/images/isofiles",
TIMESTAMP="Tue Jul 19 17:44:31 2011"]

MEMORY=64
NAME=one-0
VMID=0

VIRTUAL MACHINE HISTORY
SEQ HOSTNAME ACTION START TIME PTIME
0 host01 none 07/19 17:44:31 00 00:00:00 00 00:00:00

Here the error tells that it could not copy a file, most probably it does not exist.

Alternatively you can also check the log files for the VM at /var/log/one/<vmid>.log.

Note: Check the Virtual Machines High Availability Guide, to learn how to recover a VM in fail state.

10.3.5 Host Errors

Host errors can be checked executing the onehost show command:

$ onehost show 1
HOST 1 INFORMATION
ID : 1
NAME : host01
STATE : ERROR
IM_MAD : im_kvm
VM_MAD : vmm_kvm
TM_MAD : tm_shared

HOST SHARES
MAX MEM : 0
USED MEM (REAL) : 0
USED MEM (ALLOCATED) : 0
MAX CPU : 0
USED CPU (REAL) : 0
USED CPU (ALLOCATED) : 0
RUNNING VMS : 0

MONITORING INFORMATION
ERROR=[

MESSAGE="Error monitoring host 1 : MONITOR FAILURE 1 Could not update remotes",
TIMESTAMP="Tue Jul 19 17:17:22 2011"]

The error message appears in the ERROR value of the monitoring. To get more information you can check /var/
log/one/oned.log. For example for this error we get in the log file:

Tue Jul 19 17:17:22 2011 [InM][I]: Monitoring host host01 (1)
Tue Jul 19 17:17:22 2011 [InM][I]: Command execution fail: scp -r /var/lib/one/
→˓remotes/. host01:/var/tmp/one
Tue Jul 19 17:17:22 2011 [InM][I]: ssh: Could not resolve hostname host01: nodename
→˓nor servname provided, or not known

10.3. Logging & Debugging 161

OpenNebula 5.2 Deployment guide, Release 5.2.1

Tue Jul 19 17:17:22 2011 [InM][I]: lost connection
Tue Jul 19 17:17:22 2011 [InM][I]: ExitCode: 1
Tue Jul 19 17:17:22 2011 [InM][E]: Error monitoring host 1 : MONITOR FAILURE 1 Could
→˓not update remotes

From the execution output we notice that the host name is not know, probably a mistake naming the host.

10.4 Onedb Tool

This section describes the onedb CLI tool. It can be used to get information from an OpenNebula database, upgrade
it, or fix inconsistency problems.

10.4.1 Connection Parameters

The command onedb can connect to any SQLite or MySQL database. Visit the onedb man page for a complete
reference. These are two examples for the default databases:

$ onedb <command> -v --sqlite /var/lib/one/one.db
$ onedb <command> -v -S localhost -u oneadmin -p oneadmin -d opennebula

10.4.2 onedb fsck

Checks the consistency of the DB, and fixes the problems found. For example, if the machine where OpenNebula is
running crashes, or looses connectivity with the database, you may have a wrong number of VMs running in a Host,
or incorrect usage quotas for some users.

$ onedb fsck --sqlite /var/lib/one/one.db
Sqlite database backup stored in /var/lib/one/one.db.bck
Use 'onedb restore' or copy the file back to restore the DB.

Host 0 RUNNING_VMS has 12 is 11
Host 0 CPU_USAGE has 1200 is 1100
Host 0 MEM_USAGE has 1572864 is 1441792
Image 0 RUNNING_VMS has 6 is 5
User 2 quotas: CPU_USED has 12 is 11.0
User 2 quotas: MEMORY_USED has 1536 is 1408
User 2 quotas: VMS_USED has 12 is 11
User 2 quotas: Image 0 RVMS has 6 is 5
Group 1 quotas: CPU_USED has 12 is 11.0
Group 1 quotas: MEMORY_USED has 1536 is 1408
Group 1 quotas: VMS_USED has 12 is 11
Group 1 quotas: Image 0 RVMS has 6 is 5

Total errors found: 12

If onedb fsck shows the following error message:

[UNREPAIRED] History record for VM <<vid>> seq # <<seq>> is not closed (etime = 0)

This is due to bug #4000. It means that when using accounting or showback, the etime (end-time) of that history record
is not set, and the VM is considered as still running when it should not. To fix this problem, locate the time when the
VM was shut down in the logs and then execute this patch to edit the times manually:

10.4. Onedb Tool 162

http://dev.opennebula.org/issues/4000

OpenNebula 5.2 Deployment guide, Release 5.2.1

$ onedb patch -v --sqlite /var/lib/one/one.db /usr/lib/one/ruby/onedb/patches/history_
→˓times.rb
Version read:
Shared tables 4.11.80 : OpenNebula 5.0.1 daemon bootstrap
Local tables 4.13.85 : OpenNebula 5.0.1 daemon bootstrap

Sqlite database backup stored in /var/lib/one/one.db_2015-10-13_12:40:2.bck
Use 'onedb restore' or copy the file back to restore the DB.

> Running patch /usr/lib/one/ruby/onedb/patches/history_times.rb
This tool will allow you to edit the timestamps of VM history records, used to
→˓calculate accounting and showback.
VM ID: 1
History sequence number: 0

STIME Start time : 2015-10-08 15:24:06 UTC
PSTIME Prolog start time : 2015-10-08 15:24:06 UTC
PETIME Prolog end time : 2015-10-08 15:24:29 UTC
RSTIME Running start time : 2015-10-08 15:24:29 UTC
RETIME Running end time : 2015-10-08 15:42:35 UTC
ESTIME Epilog start time : 2015-10-08 15:42:35 UTC
EETIME Epilog end time : 2015-10-08 15:42:36 UTC
ETIME End time : 2015-10-08 15:42:36 UTC

To set new values:
empty to use current value; <YYYY-MM-DD HH:MM:SS> in UTC; or 0 to leave unset (open

→˓history record).
STIME Start time : 2015-10-08 15:24:06 UTC
New value :

ETIME End time : 2015-10-08 15:42:36 UTC
New value :

The history record # 0 for VM 1 will be updated with these new values:
STIME Start time : 2015-10-08 15:24:06 UTC
PSTIME Prolog start time : 2015-10-08 15:24:06 UTC
PETIME Prolog end time : 2015-10-08 15:24:29 UTC
RSTIME Running start time : 2015-10-08 15:24:29 UTC
RETIME Running end time : 2015-10-08 15:42:35 UTC
ESTIME Epilog start time : 2015-10-08 15:42:35 UTC
EETIME Epilog end time : 2015-10-08 15:42:36 UTC
ETIME End time : 2015-10-08 15:42:36 UTC

Confirm to write to the database [Y/n]: y
> Done

> Total time: 27.79s

10.4.3 onedb version

Prints the current DB version.

$ onedb version --sqlite /var/lib/one/one.db
3.8.0

10.4. Onedb Tool 163

OpenNebula 5.2 Deployment guide, Release 5.2.1

Use the -v flag to see the complete version and comment.

$ onedb version -v --sqlite /var/lib/one/one.db
Version: 3.8.0
Timestamp: 10/19 16:04:17
Comment: Database migrated from 3.7.80 to 3.8.0 (OpenNebula 3.8.0) by onedb command.

If the MySQL database password contains special characters, such as @ or #, the onedb command will fail to connect
to it.

The workaround is to temporarily change the oneadmin’s password to an ASCII string. The set password statement
can be used for this:

$ mysql -u oneadmin -p

mysql> SET PASSWORD = PASSWORD('newpass');

10.4.4 onedb history

Each time the DB is upgraded, the process is logged. You can use the history command to retrieve the upgrade
history.

$ onedb history -S localhost -u oneadmin -p oneadmin -d opennebula
Version: 3.0.0
Timestamp: 10/07 12:40:49
Comment: OpenNebula 3.0.0 daemon bootstrap

...

Version: 3.7.80
Timestamp: 10/08 17:36:15
Comment: Database migrated from 3.6.0 to 3.7.80 (OpenNebula 3.7.80) by onedb
→˓command.

Version: 3.8.0
Timestamp: 10/19 16:04:17
Comment: Database migrated from 3.7.80 to 3.8.0 (OpenNebula 3.8.0) by onedb command.

10.4.5 onedb upgrade

The upgrade process is fully documented in the Upgrading from Previous Versions guide.

10.4.6 onedb backup

Dumps the OpenNebula DB to a file.

$ onedb backup --sqlite /var/lib/one/one.db /tmp/my_backup.db
Sqlite database backup stored in /tmp/my_backup.db
Use 'onedb restore' or copy the file back to restore the DB.

10.4. Onedb Tool 164

http://dev.mysql.com/doc/refman/5.6/en/set-password.html

OpenNebula 5.2 Deployment guide, Release 5.2.1

10.4.7 onedb restore

Restores the DB from a backup file. Please not that this tool will only restore backups generated from the same
backend, i.e. you cannot backup a SQLite database and then try to populate a MySQL one.

10.4.8 onedb sqlite2mysql

This command migrates from a sqlite database to a mysql database. The procedure to follow is:

• Stop OpenNebula

• Change the DB directive in /etc/one/oned.conf to use MySQL instead of SQLite

• Bootstrap the MySQL Database: oned -i

• Migrate the Database: onedb sqlite2mysql -s <SQLITE_PATH> -u <MYSQL_USER> -p
<MYSQL_PASS> -d <MYSQL_DB>

• Start OpenNebula

10.5 Large Deployments

10.5.1 Monitoring

In KVM environments, OpenNebula supports two native monitoring systems: ssh-pull and udp-push. The
former one, ssh-pull is the default monitoring system for OpenNebula <= 4.2, however from OpenNebula 4.4
onwards, the default monitoring system is the udp-push system. This model is highly scalable and its limit (in terms
of number of VMs monitored per second) is bounded to the performance of the server running oned and the database
server. Read more in the Monitoring guide.

For vCenter environments, OpenNebula uses the VI API offered by vCenter to monitor the state of the hypervisor and
all the Virtual Machines running in all the imported vCenter clusters. The driver is optimized to cache common VM
information.

In both environments, our scalability testing achieves the monitoring of tens of thousands of VMs in a few minutes.

10.5.2 Core Tuning

OpenNebula keeps the monitorization history for a defined time in a database table. These values are then used to
draw the plots in Sunstone.

These monitorization entries can take quite a bit of storage in your database. The amount of storage used will depend
on the size of your cloud, and the following configuration attributes in oned.conf :

• MONITORING_INTERVAL: Time in seconds between each monitorization. Default: 60.

• collectd IM_MAD -i argument (KVM only): Time in seconds of the monitorization push cycle. Default: 20.

• HOST_MONITORING_EXPIRATION_TIME: Time, in seconds, to expire monitoring information. Default:
12h.

• VM_MONITORING_EXPIRATION_TIME: Time, in seconds, to expire monitoring information. Default: 4h.

If you don’t use Sunstone, you may want to disable the monitoring history, setting both expiration times to 0.

Each monitoring entry will be around 2 KB for each Host, and 4 KB for each VM. To give you an idea of how much
database storage you will need to prepare, here are some examples:

10.5. Large Deployments 165

OpenNebula 5.2 Deployment guide, Release 5.2.1

Monitoring interval Host expiration # Hosts Storage
20s 12h 200 850 MB
20s 24h 1000 8.2 GB

Monitoring interval VM expiration # VMs Storage
20s 4h 2000 1.8 GB
20s 24h 10000 7 GB

10.5.3 API Tuning

For large deployments with lots of xmlprc calls the default values for the xmlprc server are too conservative. The
values you can modify and its meaning are explained in oned.conf and the xmlrpc-c library documentation. From our
experience these values improve the server behavior with a high amount of client calls:

MAX_CONN = 240
MAX_CONN_BACKLOG = 480

The core is able to paginate some pool answers. This makes the memory consumption decrease and in some cases
the parsing faster. By default the pagination value is 2000 objects but can be changed using the environment variable
ONE_POOL_PAGE_SIZE. It should be bigger that 2. For example, to list VMs with a page size of 5000 we can use:

$ ONE_POOL_PAGE_SIZE=5000 onevm list

To disable pagination we can use a non numeric value:

$ ONE_POOL_PAGE_SIZE=disabled onevm list

This environment variable can be also used for Sunstone.

10.5.4 Driver Tuning

OpenNebula drivers have by default 15 threads. This is the maximum number of actions a driver can perform at the
same time, the next actions will be queued. You can make this value in oned.conf , the driver parameter is -t.

10.5.5 Database Tuning

For non test installations use MySQL database. sqlite is too slow for more than a couple hosts and a few VMs.

10.5.6 Sunstone Tuning

Please refer to guide about Configuring Sunstone for Large Deployments.

10.5. Large Deployments 166

http://xmlrpc-c.sourceforge.net/doc/libxmlrpc_server_abyss.html#max_conn

	Cloud Design
	Overview
	Open Cloud Architecture
	VMware Cloud Architecture
	OpenNebula Provisioning Model

	OpenNebula Installation
	Overview
	Front-end Installation
	MySQL Setup

	Node Installation
	Overview
	KVM Node Installation
	vCenter Node Installation
	Verify your Installation

	Authentication Setup
	Overview
	SSH Authentication
	x509 Authentication
	LDAP Authentication

	Sunstone Setup
	Overview
	Sunstone Installation & Configuration
	Sunstone Views
	User Security and Authentication
	Cloud Servers Authentication
	Configuring Sunstone for Large Deployments

	VMware Infrastructure Setup
	Overview
	vCenter Node
	vCenter Datastore
	vCenter Networking

	Open Cloud Host Setup
	Overview
	KVM Driver
	Monitoring
	PCI Passthrough

	Open Cloud Storage Setup
	Overview
	Filesystem Datastore
	Ceph Datastore
	LVM Datastore
	Raw Device Mapping (RDM) Datastore
	iSCSI - Libvirt Datastore
	The Kernels & Files Datastore

	Open Cloud Networking Setup
	Overview
	Node Setup
	Bridged Networking
	802.1Q VLAN Networks
	VXLAN Networks
	Open vSwitch Networks

	References
	Overview
	ONED Configuration
	Logging & Debugging
	Onedb Tool
	Large Deployments

