
OpenNebula 4.6 User Guide
Release 4.6

OpenNebula Project

May 09, 2014

CONTENTS

1 Virtual Resource Management 1
1.1 Introduction to Private Cloud Computing . 1
1.2 Managing Virtual Networks . 4
1.3 Managing Images . 12
1.4 Creating Virtual Machines . 22
1.5 Managing Virtual Machines . 27

2 Virtual Machine Setup 43
2.1 Contextualization Overview . 43
2.2 Adding Content to Your Cloud . 43
2.3 Basic Contextualization . 44
2.4 Advanced Contextualization . 45
2.5 Windows Contextualization . 51
2.6 Cloud-init . 53

3 OpenNebula Marketplace 55
3.1 Interacting with the OpenNebula Marketplace . 55
3.2 Howto Create Apps for the Marketplace . 59

4 References 63
4.1 Virtual Machine Definition File . 63
4.2 Image Definition Template . 76
4.3 Virtual Network Definition File . 79
4.4 Command Line Interface . 81

i

ii

CHAPTER

ONE

VIRTUAL RESOURCE MANAGEMENT

1.1 Introduction to Private Cloud Computing

The aim of a Private Cloud is not to expose to the world a cloud interface to sell capacity over the Internet, but
to provide local cloud users and administrators with a flexible and agile private infrastructure to run virtu-
alized service workloads within the administrative domain. OpenNebula virtual infrastructure interfaces expose
user and administrator functionality for virtualization, networking, image and physical resource configuration,
management, monitoring and accounting. This guide briefly describes how OpenNebula operates to build a Cloud
infrastructure. After reading this guide you may be interested in reading the guide describing how an hybrid cloud
operates and the guide describing how a public cloud operates.

1

OpenNebula 4.6 User Guide, Release 4.6

1.1.1 The User View

An OpenNebula Private Cloud provides infrastructure users with an elastic platform for fast delivery and scalability
of services to meet dynamic demands of service end-users. Services are hosted in VMs, and then submitted,
monitored and controlled in the Cloud by using Sunstone or any of the OpenNebula interfaces:

• Command Line Interface (CLI)

• XML-RPC API

• OpenNebula Ruby and Java Cloud APIs

Lets do a sample session to illustrate the functionality provided by the OpenNebula CLI for Private Cloud
Computing. First thing to do, check the hosts in the physical cluster:

$ onehost list
ID NAME RVM TCPU FCPU ACPU TMEM FMEM AMEM STAT
0 host01 0 800 800 800 16G 16G 16G on
1 host02 0 800 800 800 16G 16G 16G on

We can then register an image in OpenNebula, by using oneimage. We are going to build an image template to
register the image file we had previously placed in the /home/cloud/images directory.

NAME = Ubuntu
PATH = /home/cloud/images/ubuntu-desktop/disk.0
PUBLIC = YES
DESCRIPTION = "Ubuntu 10.04 desktop for students."

$ oneimage create ubuntu.oneimg
ID: 0

$ oneimage list

2 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

ID USER GROUP NAME SIZE TYPE REGTIME PUB PER STAT RVMS
1 oneadmin oneadmin Ubuntu 10G OS 09/29 07:24:35 Yes No rdy 0

This image is now ready to be used in a virtual machine. We need to define a virtual machine template to be submitted
using the onetemplate command.

NAME = my_vm
CPU = 1
MEMORY = 2056

DISK = [IMAGE_ID = 0]

DISK = [type = swap,
size = 1024]

NIC = [NETWORK_ID = 0]

Once we have tailored the requirements to our needs (specially, CPU and MEMORY fields), ensuring that the VM fits
into at least one of both hosts, let’s submit the VM (assuming you are currently in your home folder):

$ onetemplate create vm
ID: 0

$ onetemplate list
ID USER GROUP NAME REGTIME PUB
0 oneadmin oneadmin my_vm 09/29 07:28:41 No

The listed template is just a VM definition. To execute an instance, we can use the onetemplate command again:

$ onetemplate instantiate 1
VM ID: 0

This should come back with an ID, that we can use to identify the VM for monitoring and controlling, this time
through the use of the onevm command:

$ onevm list
ID USER GROUP NAME STAT CPU MEM HOSTNAME TIME
0 oneadmin oneadmin one-0 runn 0 0K host01 00 00:00:06

The STAT field tells the state of the virtual machine. If there is an runn state, the virtual machine is up and running.
Depending on how we set up the image, we may be aware of it’s IP address. If that is the case we can try now and log
into the VM.

To perform a migration, we use yet again the onevm command. Let’s move the VM (with VID=0) to host02
(HID=1):

$ onevm migrate --live 0 1

This will move the VM from host01 to host02. The onevm list shows something like the following:

$ onevm list
ID USER GROUP NAME STAT CPU MEM HOSTNAME TIME
0 oneadmin oneadmin one-0 runn 0 0K host02 00 00:00:48

You can also reproduce this sample session using the graphical interface provided by Sunstone, that will simplify the
typical management operations.

1.1. Introduction to Private Cloud Computing 3

OpenNebula 4.6 User Guide, Release 4.6

1.1.2 Next Steps

You can now read the different guides describing how to define and manage virtual resources on your OpenNebula
cloud:

• Virtual Networks

• Virtual Machine Images

• Virtual Machine Templates

• Virtual Machine Instances

You can also install OneFlow to allows users and administrators to define, execute and manage multi-tiered applica-
tions composed of interconnected Virtual Machines with auto-scaling.

1.2 Managing Virtual Networks

A host is connected to one or more networks that are available to the virtual machines through the corresponding
bridges. OpenNebula allows the creation of Virtual Networks by mapping them on top of the physical ones

1.2.1 Overview

In this guide you’ll learn how to define and use virtual networks. For the sake of simplicity the following examples
assume that the hosts are attached to two physical networks:

• A private network, through the virtual bridge vbr0

4 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

• A network with Internet connectivity, through vbr1

This guide uses the CLI command onevnet, but you can also manage your virtual networks using Sunstone. Select
the Network tab, and there you will be able to create and manage your virtual networks in a user friendly way.

1.2.2 Adding, Deleting and Updating Virtual Networks

A virtual network is defined by two sets of options:

• The underlying networking parameters, e.g. BRIDGE, VLAN or PHY_DEV. These attributes depend on the
networking technology (drivers) used by the hosts. Please refer to the specific networking guide.

• A set of Leases. A lease defines a MAC - IP pair, related as MAC = MAC_PREFFIX:IP. For IPv6 networks the
only relevant part is the MAC address (see below).

Depending on how the lease set is defined the networks are:

• Fixed. A limited (possibly disjoint) set of leases, e.g: 10.0.0.1, 10.0.0.40 and 10.0.0.34

• Ranged. A continuous set of leases (like in a network way), e.g: 10.0.0.0/24

Please refer to the Virtual Network template reference guide for more information. The onevnet command is used
to create a VNet from that template.

1.2. Managing Virtual Networks 5

OpenNebula 4.6 User Guide, Release 4.6

IPv4 Networks

IPv4 leases can be defined in several ways:

• Ranged. The ranged can be defined with:

– A network address in CIDR format, e.g. NETWORK_ADDRESS=10.0.0.0/24.

– A network address and a net mask, e.g. NETWORK_ADDRESS=10.0.0.0 NET-
WORK_MASK=255.255.255.0.

– A network address and a size, e.g. NETWORK_ADDRESS=10.0.0.0, NETWORK_SIZE=C.

– An arbitrary IP range, e.g. IP_START=10.0.0.1, IP_END=10.0.0.254.

• Fixed. Each lesae can be defined by:

– An IP address, e.g. LEASE=[IP=10.0.0.1]

– An IP address and a MAC to override the default MAC generation (MAC=PREFIX:IP), e.g.
LEASE=[IP=10.0.0.1, MAC=e8:9d:87:8d:11:22]

As an example, we will create two new VNets, Blue and Red. Lets assume we have two files, blue.net and
red.net.

Blue.net file:

NAME = "Blue LAN"
TYPE = FIXED

We have to bind this network to ’’virbr1’’ for Internet Access
BRIDGE = vbr1

LEASES = [IP=130.10.0.1]
LEASES = [IP=130.10.0.2, MAC=50:20:20:20:20:21]
LEASES = [IP=130.10.0.3]
LEASES = [IP=130.10.0.4]

Custom Attributes to be used in Context
GATEWAY = 130.10.0.1
DNS = 130.10.0.1

LOAD_BALANCER = 130.10.0.4

And red.net file:

NAME = "Red LAN"
TYPE = RANGED

Now we’ll use the host private network (physical)
BRIDGE = vbr0

NETWORK_SIZE = C
NETWORK_ADDRESS = 192.168.0.0

Custom Attributes to be used in Context
GATEWAY = 192.168.0.1
DNS = 192.168.0.1

LOAD_BALANCER = 192.168.0.3

Once the files have been created, we can create the VNets executing:

6 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

$ onevnet create blue.net
ID: 0
$ onevnet create red.net
ID: 1

Also, onevnet can be used to query OpenNebula about available VNets:

$ onevnet list
ID USER GROUP NAME CLUSTER TYPE BRIDGE LEASES
0 oneadmin oneadmin Blue LAN - F vbr1 0
1 oneadmin oneadmin Red LAN - R vbr0 0

In the output above, USER is the owner of the network and LEASES the number of IP-MACs assigned to a VM from
this network.

The following attributes can be changed after creating the network: VLAN_ID, BRIDGE, VLAN and PHYDEV. To
update the network run onevnet update <id>.

To delete a virtual network just use onevnet delete. For example to delete the previous networks:

$ onevnet delete 2
$ onevnet delete ’Red LAN’

You can also check the IPs leased in a network with the onevnet show command

Check the onevnet command help or the reference guide for more options to list the virtual networks.

IPv6 Networks

OpenNebula can generate three IPv6 addresses associated to each lease:

• Link local - fe80::/64 generated always for each lease as IP6_LINK

• Unique local address (ULA) - fd00::/8, generate if a local site prefix (SITE_PREFIX) is provided as part of the
network template. The address is associated to the lease as IP6_SITE

• Global unicast address - if a global routing prefix (GLOBAL_PREFIX) is provided in the network template;
available in the lease as IP6_GLOBAL

For all the previous addresses the lower 64 bits are populated with a 64-bit interface identifier in modified EUI-64
format. You do not need to define both SITE_PREFIX and GLOBAL_PREFIX , just the ones for the IP6 addresses
needed by your VMs.

The IPv6 lease set can be generated as follows depending on the network type:

• Ranged. You will define a range of MAC addresses (that will be used to generate the EUI-64 host ID in the
guest) with the first MAC and a size, e.g. MAC_START=e8:9d:87:8d:11:22 NETWORK_SIZE=254.

• Fixed. Just set the MACs for the network hosts as: LEASE=[MAC=e8:9d:87:8d:11:22]
LEASE=[MAC=88:53:2e:08:7f:a0]

For example, the following template defines a ranged IPv6 network:

NAME = "Red LAN 6"
TYPE = RANGED

BRIDGE = vbr0

MAC_START = 02:00:c0:a8:00:01
NETWORK_SIZE = C

1.2. Managing Virtual Networks 7

OpenNebula 4.6 User Guide, Release 4.6

SITE_PREFIX = "fd12:33a:df34:1a::"
GLOBAL_PREFIX = "2004:a128::"

The IP leases are then in the form:

LEASE=[MAC="02:00:c0:a8:00:01", IP="192.168.0.1", IP6_LINK="fe80::400:c0ff:fea8:1", IP6_SITE="fd12:33a:df34:1a:400:c0ff:fea8:1", IP6_GLOBAL="2004:a128:0:32:400:c0ff:fea8:1", USED="1", VID="4"]

Note that IPv4 addresses are generated from the MAC address in case you need to configure IPv4 and IPv6 addresses
for the network.

1.2.3 Managing Virtual Networks

Adding and Removing Leases

You can add and remove leases to existing FIXED virtual networks (see the template file reference for more info on
the network types). To do so, use the onevnet addleases and onevnet rmleases commands.

The new lease can be added specifying its IP and, optionally, its MAC. If the lease already exists, the action will fail.

$ onevnet addleases 0 130.10.0.10
$ onevnet addleases 0 130.10.0.11 50:20:20:20:20:31
$
$ onevnet addleases 0 130.10.0.1
[VirtualNetworkAddLeases] Error modifiying network leases. Error inserting lease,
IP 130.10.0.1 already exists

To remove existing leases from the network, they must be free (i.e., not used by any VM).

$ onevnet rmleases 0 130.10.0.3

Hold and Release Leases

Leases can be temporarily be marked on hold state. These leases are reserved, they are part of the network, but they
will not be assigned to any VM.

To do so, use the ‘onevnet hold’ and ‘onevnet release’ commands. You see the list of leases on hold with the ‘onevnet
show’ command.

$ onevnet hold "Blue LAN" 130.10.0.1
$ onevnet hold 0 130.10.0.4

Lease Management in Sunstone

If you are using the Sunstone GUI, you can then easily add, remove, hold and release leases from the dialog of extended
information of a Virtual Network. You can open this dialog by clicking the desired element on the Virtual Network
table, as you can see in this picture:

8 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

Update the Virtual Network Template

The TEMPLATE section can hold any arbitrary data. You can use the onevnet update command to open an editor
and edit or add new template attributes. These attributes can be later used in the Virtual Machine Contextualization.
For example:

dns = "$NETWORK[DNS, NETWORK_ID=3]"

Publishing Virtual Networks

The users can share their virtual networks with other users in their group, or with all the users in OpenNebula. See the
Managing Permissions documentation for more information.

Let’s see a quick example. To share the virtual network 0 with users in the group, the USE right bit for GROUP must
be set with the chmod command:

$ onevnet show 0
...
PERMISSIONS
OWNER : um-

1.2. Managing Virtual Networks 9

OpenNebula 4.6 User Guide, Release 4.6

GROUP : ---
OTHER : ---

$ onevnet chmod 0 640

$ onevnet show 0
...
PERMISSIONS
OWNER : um-
GROUP : u--
OTHER : ---

The following command allows users in the same group USE and MANAGE the virtual network, and the rest of the
users USE it:

$ onevnet chmod 0 664

$ onevnet show 0
...
PERMISSIONS
OWNER : um-
GROUP : um-
OTHER : u--

The commands onevnet publish and onevnet unpublish are still present for compatibility with previous
versions. These commands set/unset

1.2.4 Getting a Lease

A lease from a virtual network can be obtained by simply specifying the virtual network name in the NIC attribute.

For example, to define VM with two network interfaces, one connected to Red LAN and other connected to Blue
LAN just include in the template:

NIC = [NETWORK_ID = 0]
NIC = [NETWORK = "Red LAN"]

Networks can be referred in a NIC in two different ways, see the Simplified Virtual Machine Definition File documen-
tation for more information:

• NETWORK_ID, using its ID as returned by the create operation

• NETWORK, using its name. In this case the name refers to one of the virtual networks owned by the user
(names can not be repeated for the same user). If you want to refer to an NETWORK of other user you can
specify that with NETWORK_UID (by the uid of the user) or NETWORK_UNAME (by the name of the user).

You can also request a specific address just by adding the IP attributes to NIC (or MAC address, specially in a IPv6):

NIC = [NETWORK_ID = 1, IP = 192.168.0.3]

When the VM is submitted, OpenNebula will look for available IPs in the Blue LAN and Red LAN virtual networks.
The leases on hold will be skipped. If successful, the onevm show command should return information about the
machine, including network information.

$ onevm show 0
VIRTUAL MACHINE 0 INFORMATION
ID : 0
NAME : server
USER : oneadmin

10 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

GROUP : oneadmin
STATE : PENDING
LCM_STATE : LCM_INIT
START TIME : 12/13 06:59:07
END TIME : -
DEPLOY ID : -

PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---

VIRTUAL MACHINE MONITORING
NET_TX : 0
NET_RX : 0
USED MEMORY : 0
USED CPU : 0

VIRTUAL MACHINE TEMPLATE
NAME=server
NIC=[

BRIDGE=vbr1,
IP=130.10.0.2,
MAC=02:00:87:8d:11:25,
IP6_LINK=fe80::400:87ff:fe8d:1125
NETWORK="Blue LAN",
NETWORK_ID=0,
VLAN=NO]

NIC=[
BRIDGE=vbr0,
IP=192.168.0.2,
IP6_LINK=fe80::400:c0ff:fea8:2,
MAC=00:03:c0:a8:00:02,
NETWORK="Red LAN",
NETWORK_ID=1,
VLAN=NO]

VMID=0

Warning: Note that if OpenNebula is not able to obtain a lease from a network the submission will fail.

Now we can query OpenNebula with onevnet show to find out about given leases and other VNet information:

$ onevnet list
ID USER GROUP NAME CLUSTER TYPE BRIDGE LEASES
0 oneadmin oneadmin Blue LAN - F vbr1 3
1 oneadmin oneadmin Red LAN - R vbr0 3

Note that there are two LEASES on hold, and one LEASE used in each network

$ onevnet show 1
VIRTUAL NETWORK 1 INFORMATION
ID : 1
NAME : Red LAN
USER : oneadmin
GROUP : oneadmin
TYPE : RANGED
BRIDGE : vbr0
VLAN : No

1.2. Managing Virtual Networks 11

OpenNebula 4.6 User Guide, Release 4.6

PHYSICAL DEVICE:
VLAN ID :
USED LEASES : 3

PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---

VIRTUAL NETWORK TEMPLATE
DNS=192.168.0.1
GATEWAY=192.168.0.1
LOAD_BALANCER=192.168.0.3
NETWORK_MASK=255.255.255.0

RANGE
IP_START : 192.168.0.1
IP_END : 192.168.0.254

LEASES ON HOLD
LEASE=[MAC="02:00:c0:a8:00:01", IP="192.168.0.1", IP6_LINK="fe80::400:c0ff:fea8:1", USED="1", VID="-1"]
LEASE=[MAC="02:00:c0:a8:00:03", IP="192.168.0.3", IP6_LINK="fe80::400:c0ff:fea8:3", USED="1", VID="-1"]

USED LEASES

LEASE=[MAC="02:00:c0:a8:00:02", IP="192.168.0.2", IP6_LINK="fe80::400:c0ff:fea8:2", USED="1", VID="4"]

Warning: IP 192.168.0.2 is in use by Virtual Machine 4

Apply Firewall Rules to VMs

You can apply firewall rules on your VMs, to filter TCP and UDP ports, and to define a policy for ICMP connections.

Read more about this feature here.

Using the Leases within the Virtual Machine

Hypervisors can attach a specific MAC address to a virtual network interface, but Virtual Machines need to obtain an
IP address.

In order to configure the IP inside the guest, you need to use one of the two available methods:

• Instantiate a Virtual Router inside each Virtual Network. The Virtual Router appliance contains a DHCP server
that knows the IP assigned to each VM.

• Contextualize the VM. Please visit the contextualization guide to learn how to configure your Virtual Machines
to automatically obtain an IP derived from the MAC.

1.3 Managing Images

The Storage system allows OpenNebula administrators and users to set up images, which can be operative systems or
data, to be used in Virtual Machines easily. These images can be used by several Virtual Machines simultaneously,
and also shared with other users.

12 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

If you want to customize the Storage in your system, visit the Storage subsystem guide.

1.3.1 Image Types

There are six different types of images. Using the command oneimage chtype, you can change the type of an
existing Image.

• OS: An OS image contains a working operative system. Every VM template must define one DISK referring to
an image of this type.

• CDROM: These images are readonly data. Only one image of this type can be used in each VM template. These
type of images are not cloned when using shared storage.

• DATABLOCK: A datablock image is a storage for data, which can be accessed and modified from different
Virtual Machines. These images can be created from previous existing data, or as an empty drive.

• KERNEL: A plain file to be used as kernel (VM attribute OS/KERNEL_DS). Note that KERNEL file images
can be registered only in File Datastores.

• RAMDISK: A plain file to be used as ramdisk (VM attribute OS/INITRD_DS). Note that RAMDISK file
images can be registered only in File Datastores.

• CONTEXT: A plain file to be included in the context CD-ROM (VM attribute CONTEXT/FILES_DS). Note
that CONTEXT file images can be registered only in File Datastores.

The Virtual Machines can use as many datablocks as needed. Refer to the VM template documentation for further
information.

Warning: Note that some of the operations described below do not apply to KERNEL, RAMDISK and CON-
TEXT images, in particular: clone and persistent.

1.3.2 Image Life-cycle

Short
state

State Meaning

lock LOCKED The image file is being copied or created in the Datastore.
rdy READY Image ready to be used.
used USED Non-persistent Image used by at least one VM. It can still be used by other VMs.
used USED_PERS Persistent Image is use by a VM. It cannot be used by new VMs.
disa DISABLED Image disabled by the owner, it cannot be used by new VMs.
err ERROR Error state, a FS operation failed. See the Image information with oneimage show

for an error message.
dele DELETE The image is being deleted from the Datastore.

This is the state diagram for persistent images:

1.3. Managing Images 13

OpenNebula 4.6 User Guide, Release 4.6

And the following one is the state diagram for non-persistent images:

14 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

1.3.3 Managing Images

Users can manage their images using the command line interface command oneimage. The complete reference is
here.

You can also manage your images using Sunstone. Select the Images tab, and there you will be able to create, enable,
disable, delete your images and even manage their persistence and publicity in a user friendly way. From Sunstone
3.4, you can also upload images directly from the web UI.

1.3. Managing Images 15

OpenNebula 4.6 User Guide, Release 4.6

Create Images

Warning: For VMWare images, please read also the VMware Drivers guide.

The three types of images can be created from an existing file, but for datablock images you can specify a size and
filesystem type and let OpenNebula create an empty image in the datastore.

If you want to create an OS image, you need to prepare a contextualized virtual machine, and extract its disk.

Please read first the documentation about the MAC to IP mechanism in the virtual network management documenta-
tion, and how to use contextualization here.

Once you have a disk you want to upload, you need to create a new image template, and submit it using the oneimage
create command.

The complete reference for the image template is here. This is how a sample template looks like:

$ cat ubuntu_img.one
NAME = "Ubuntu"
PATH = /home/cloud/images/ubuntu-desktop/disk.0

16 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

TYPE = OS
DESCRIPTION = "Ubuntu 10.04 desktop for students."

You need to choose the Datastore where to register the new Image. To know the available datastores, use the
onedatastore list command. In this case, only the ‘default’ one is listed:

$ onedatastore list
ID NAME CLUSTER IMAGES TYPE TM
1 default - 1 fs shared

To submit the template, you just have to issue the command

$ oneimage create ubuntu_img.one --datastore default
ID: 0

You can also create images using just parameters in the oneimage create call. The parameters to generate the
image are as follows:

Parameter Description
-name name Name of the new image
-description
description

Description for the new Image

-type type Type of the new Image: OS, CDROM or DATABLOCK, FILE
-persistent Tells if the image will be persistent
-prefix prefix Device prefix for the disk (eg. hd, sd, xvd or vd)
-target target Device the disk will be attached to
-path path Path of the image file
-driver driver Driver to use image (raw, qcow2, tap:aio:...)
-disk_type disk_type Type of the image (BLOCK, CDROM or FILE)
-source source Source to be used. Useful for not file-based images
-size size Size in MB. Used for DATABLOCK type
-fstype fstype Type of file system to be built: ext2, ext3, ext4, ntfs, reiserfs, jfs, swap,

qcow2

To create the previous example image you can do it like this:

$ oneimage create --datastore default --name Ubuntu --path /home/cloud/images/ubuntu-desktop/disk.0 \
--description "Ubuntu 10.04 desktop for students."

Warning: You can use gz compressed image files (i.e. as specified in path) when registering them in OpenNebula.

Uploading Images from Sunstone

Image file upload to the server via the client browser is possible with the help of a vendor library. The process is as
follow:

• Step 1: The client uploads the whole image to the server in a temporal file in the tpmdir folder specified in the
configuration.

• Step 2: OpenNebula registers an image setting the PATH to that temporal file.

• Step 3: OpenNebula copies the images to the datastore.

• Step 4: The temporal file is deleted and the request returns successfully to the user (a message pops up indicating
that image was uploaded correctly).

Note that when file sizes become big (normally over 1GB), and depending on your hardware, it may take long to
complete the copying in step 3. Since the upload request needs to stay pending until copying is sucessful (so it can

1.3. Managing Images 17

OpenNebula 4.6 User Guide, Release 4.6

delete the temp file safely), there might be Ajax timeouts and/or lack of response from the server. This may cause
errors, or trigger re-uploads (which reinitiate the loading progress bar).

As of Firefox 11 and previous versions, uploads seem to be limited to 2GB. Chrome seems to work well with images
> 4 GB.

Clone Images

Existing images can be cloned to a new one. This is useful to make a backup of an Image before you modify it, or to
get a private persistent copy of an image shared by other user.

To clone an image, execute

$ oneimage clone Ubuntu new_image

Listing Available Images

You can use the oneimage list command to check the available images in the repository.

$ oneimage list
ID USER GROUP NAME DATASTORE SIZE TYPE PER STAT RVMS
0 oneuser1 users Ubuntu default 8M OS No rdy 0

To get complete information about an image, use oneimage show, or list images continuously with oneimage
top.

Publishing Images

The users can share their images with other users in their group, or with all the users in OpenNebula. See the Managing
Permissions documentation for more information.

Let’s see a quick example. To share the image 0 with users in the group, the USE right bit for GROUP must be set
with the chmod command:

$ oneimage show 0
...
PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---

$ oneimage chmod 0 640

$ oneimage show 0
...
PERMISSIONS
OWNER : um-
GROUP : u--
OTHER : ---

The following command allows users in the same group USE and MANAGE the image, and the rest of the users USE
it:

$ oneimage chmod 0 664

$ oneimage show 0

18 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

...
PERMISSIONS
OWNER : um-
GROUP : um-
OTHER : u--

The commands oneimage publish and oneimage unpublish are still present for compatibility with previ-
ous versions. These commands set/unset the GROUP USE bit.

Making Images Persistent

Use the oneimage persistent and oneimage nonpersistent commands to make your images persistent
or not.

A persistent image saves back to the datastore the changes made inside the VM after it is shut down. More specifically,
the changes are correctly preserved only if the VM is ended with the onevm shutdown or onevm shutdown
--hard commands. Note that depending on the Datastore type a persistent image can be a link to the original image,
so any modification is directly made on the image.

$ oneimage list
ID USER GROUP NAME DATASTORE SIZE TYPE PER STAT RVMS
0 oneadmin oneadmin Ubuntu default 10G OS No rdy 0

$ oneimage persistent Ubuntu
$ oneimage list

ID USER GROUP NAME DATASTORE SIZE TYPE PER STAT RVMS
0 oneadmin oneadmin Ubuntu default 10G OS Yes rdy 0

$ oneimage nonpersistent 0
$ oneimage list

ID USER GROUP NAME DATASTORE SIZE TYPE PER STAT RVMS
0 oneadmin oneadmin Ubuntu default 10G OS No rdy 0

Warning: When images are public (GROUP or OTHER USE bit set) they are always cloned, and persistent
images are never cloned. Therefore, an image cannot be public and persistent at the same time. To manage a public
image that won’t be cloned, unpublish it first and make it persistent.

1.3.4 How to Use Images in Virtual Machines

This a simple example on how to specify images as virtual machine disks. Please visit the virtual machine user guide
and the virtual machine template documentation for a more thorough explanation.

Assuming you have an OS image called Ubuntu desktop with ID 1, you can use it in your virtual machine template as
a DISK. When this machine is deployed, the first disk will be taken from the image repository.

Images can be referred in a DISK in two different ways:

• IMAGE_ID, using its ID as returned by the create operation

• IMAGE, using its name. In this case the name refers to one of the images owned by the user (names can not
be repeated for the same user). If you want to refer to an IMAGE of other user you can specify that with
IMAGE_UID (by the uid of the user) or IMAGE_UNAME (by the name of the user).

CPU = 1
MEMORY = 3.08

DISK = [IMAGE_ID = 1]

1.3. Managing Images 19

OpenNebula 4.6 User Guide, Release 4.6

DISK = [type = swap,
size = 1024]

NIC = [NETWORK_ID = 1]
NIC = [NETWORK_ID = 0]

FEATURES=[acpi="no"]

GRAPHICS = [
type = "vnc",
listen = "1.2.3.4",
port = "5902"]

CONTEXT = [
files = "/home/cloud/images/ubuntu-desktop/init.sh"]

Save Changes

Once the VM is deployed you can snapshot a disk, i.e. save the changes made to the disk as a new image. There are
two types of disk snapshots in OpenNebula:

• Deferred snapshots (disk-snapshot), changes to a disk will be saved as a new Image in the associated datastore
when the VM is shutdown.

• Hot snapshots (hot disk-snapshot), just as the deferred snapshots, but the disk is copied to the datastore the
moment the operation is triggered. Therefore, you must guarantee that the disk is in a consistent state during the
save_as operation (e.g. by umounting the disk from the VM).

To save a disk, use the onevm disk-snapshot command. This command takes three arguments: The VM name
(or ID), the disk ID to save and the name of the new image to register. And optionally the –live argument to not defer
the disk-snapshot operation.

To know the ID of the disk you want to save, just take a look at the onevm show output for your VM, you are
interested in the ID column in the VM DISK section.

$ onevm show 11
VIRTUAL MACHINE 11 INFORMATION
ID : 11
NAME : ttylinux-11
USER : ruben
GROUP : oneadmin
STATE : PENDING
LCM_STATE : LCM_INIT
RESCHED : No
START TIME : 03/08 22:24:57
END TIME : -
DEPLOY ID : -

VIRTUAL MACHINE MONITORING
USED MEMORY : 0K
USED CPU : 0
NET_TX : 0K
NET_RX : 0K

PERMISSIONS
OWNER : um-
GROUP : ---

20 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

OTHER : ---

VM DISKS
ID TARGET IMAGE TYPE SAVE SAVE_AS
0 hda ttylinux file NO -
1 hdb raw - 100M fs NO -

VM NICS
ID NETWORK VLAN BRIDGE IP MAC
0 net_172 no vbr0 172.16.0.201 02:00:ac:10:00:c9

fe80::400:acff:fe10:c9

VIRTUAL MACHINE TEMPLATE
CPU="1"
GRAPHICS=[

LISTEN="0.0.0.0",
PORT="5911",
TYPE="vnc"]

MEMORY="512"
OS=[

ARCH="x86_64"]
TEMPLATE_ID="0"
VCPU="1"

The IDs are assigned in the same order the disks were defined in the VM template.

The next command will register a new image called SO upgrade, that will be ready as soon as the VM is shut down.
Till then the image will be locked, and so you cannot use it.

$ onevm disk-snapshot ttylinux-11 0 "SO upgraded"

This command copies disk 1 to the datastore with name Backup of DB volume, the image will be available once the
image copy end:

$ onevm disk-snapshot --live ttylinux-11 1 "Backup of DB volume"

1.3.5 How to Use File Images in Virtual Machines

KERNEL and RAMDISK

KERNEL and RAMDISK type Images can be used in the OS/KERNEL_DS and OS/INITRD_DS attributes of the
VM template. See the complete reference for more information.

Example:

OS = [KERNEL_DS = "$FILE[IMAGE=kernel3.6]",
INITRD_DS = "$FILE[IMAGE_ID=23]",
ROOT = "sda1",
KERNEL_CMD = "ro xencons=tty console=tty1"]

CONTEXT

The contextualization cdrom can include CONTEXT type Images. Visit the complete reference for more information.

CONTEXT = [
FILES_DS = "$FILE[IMAGE_ID=34] $FILE[IMAGE=kernel]",

]

1.3. Managing Images 21

OpenNebula 4.6 User Guide, Release 4.6

1.4 Creating Virtual Machines

In OpenNebula the Virtual Machines are defined with Template files. This guide explains how to describe the wanted-
to-be-ran Virtual Machine, and how users typically interact with the system.

The Template Repository system allows OpenNebula administrators and users to register Virtual Machine definitions
in the system, to be instantiated later as Virtual Machine instances. These Templates can be instantiated several times,
and also shared with other users.

1.4.1 Virtual Machine Model

A Virtual Machine within the OpenNebula system consists of:

• A capacity in terms memory and CPU

• A set of NICs attached to one or more virtual networks

• A set of disk images

• A state file (optional) or recovery file, that contains the memory image of a running VM plus some hypervisor
specific information.

The above items, plus some additional VM attributes like the OS kernel and context information to be used inside the
VM, are specified in a template file.

1.4.2 Defining a VM in 3 Steps

Virtual Machines are defined in an OpenNebula Template. Templates are stored in a repository to easily browse and
instantiate VMs from them. To create a new Template you have to define 3 things

• Capacity & Name, how big will the VM be?

Attribute Description Mandatory Default
NAME Name that the VM will get for description purposes. Yes one-<vmid>
MEMORY Amount of RAM required for the VM, in Megabytes. Yes
CPU CPU ratio (e..g half a physical CPU is 0.5). Yes
VCPU Number of virtual cpus. No 1

• Disks. Each disk is defined with a DISK attribute. A VM can use three types of disk:

– Use a persistent Image changes to the disk image will persist after the VM is shutdown.

– Use a non-persistent Image images are cloned, changes to the image will be lost.

– Volatile disks are created on the fly on the target host. After the VM is shutdown the disk is disposed.

• Persistent and Clone Disks
Attribute Description Mandatory Default
IMAGE_ID and IMAGE The ID or Name of the image in the datastore Yes
IMAGE_UID Select the IMAGE of a given user by her ID No self
IMAGE_UNAME Select the IMAGE of a given user by her NAME No self

• Volatile

22 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

At-
tribute

Description Manda-
tory

De-
fault

TYPE Type of the disk: swap, fs. swap type will set the label to swap so it is easier to
mount and the context packages will automatically mount it.

Yes

SIZE size in MB Yes
FORMATfilesystem for fs images: ext2, ext3, etc. raw will not format the image. For VMs to

run on vmfs or vmware shared configurations, the valid values are: vmdk_thin,
vmdk_zeroedthick, vmdk_eagerzeroedthick

Yes

• Network Interfaces. Each network interface of a VM is defined with the NIC attribute.

Attribute Description Mandatory Default
NETWORK_ID and NETWORK The ID or Name of the image in the datastore Yes
NETWORK_UID Select the IMAGE of a given user by her ID No self
NETWORK_UNAME Select the IMAGE of a given user by her NAME No self

The following example shows a VM Template file with a couple of disks and a network interface, also a VNC section
was added.

NAME = test-vm
MEMORY = 128
CPU = 1

DISK = [IMAGE = "Arch Linux"]
DISK = [TYPE = swap,

SIZE = 1024]

NIC = [NETWORK = "Public", NETWORK_UNAME="oneadmin"]

GRAPHICS = [
TYPE = "vnc",
LISTEN = "0.0.0.0"]

Simple templates can be also created using the command line instead of creating a template file. The parameters to do
this for onetemplate are:

Parameter Description
-name name Name for the VM
-cpu cpu CPU percentage reserved for the VM (1=100% one CPU)
-vcpu vcpu Number of virtualized CPUs
-arch arch Architecture of the VM, e.g.: i386 or x86_64
-memory
memory

Memory ammount given to the VM

-disk
disk0,disk1

Disks to attach. To use a disk owned by other user use user[disk]

-nic
vnet0,vnet1

Networks to attach. To use a network owned by other user use user[network]

-raw string Raw string to add to the template. Not to be confused with the RAW attribute. If you want to
provide more than one element, just include an enter inside quotes, instead of using more than
one -raw option

-vnc Add VNC server to the VM
-ssh [file] Add an ssh public key to the context. If the file is omited then the user variable

SSH_PUBLIC_KEY will be used.
-net_context Add network contextualization parameters
-context
line1,line2

Lines to add to the context section

-boot
device

Select boot device (hd, fd, cdrom or network)

1.4. Creating Virtual Machines 23

OpenNebula 4.6 User Guide, Release 4.6

A similar template as the previous example can be created with the following command:

$ onetemplate create --name test-vm --memory 128 --cpu 1 --disk "Arch Linux" --nic Public

Warning: You may want to add VNC access, input hw or change the default targets of the disks. Check the VM
definition file for a complete reference

Warning: OpenNebula Templates are designed to be hypervisor-agnostic, but there are additional attributes that
are supported for each hypervisor. Check the Xen, KVM and VMware configuration guides for more details

Warning: Volatile disks can not be saved as. Pre-register a DataBlock image if you need to attach arbitrary
volumes to the VM

1.4.3 Managing Templates

Users can manage the Template Repository using the command onetemplate, or the graphical interface Sunstone.
For each user, the actual list of templates available are determined by the ownership and permissions of the templates.

Listing Available Templates

You can use the onetemplate list command to check the available Templates in the system.

$ onetemplate list a
ID USER GROUP NAME REGTIME
0 oneadmin oneadmin template-0 09/27 09:37:00
1 oneuser users template-1 09/27 09:37:19
2 oneadmin oneadmin Ubuntu_server 09/27 09:37:42

To get complete information about a Template, use onetemplate show.

Here is a view of templates tab in Sunstone:

24 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

Adding and Deleting Templates

Using onetemplate create, users can create new Templates for private or shared use. The onetemplate
delete command allows the Template owner -or the OpenNebula administrator- to delete it from the repository.

For instance, if the previous example template is written in the vm-example.txt file:

$ onetemplate create vm-example.txt
ID: 6

You can also clone an existing Template, with the onetemplate clone command:

$ onetemplate clone 6 new_template
ID: 7

Via Sunstone, you can easily add templates using the provided wizards (or copy/pasting a template file) and delete
them clicking on the delete button:

Updating a Template

It is possible to update a template by using the onetemplate update. This will launch the editor defined in the
variable EDITOR and let you edit the template.

$ onetemplate update 3

Publishing Templates

The users can share their Templates with other users in their group, or with all the users in OpenNebula. See the
Managing Permissions documentation for more information.

1.4. Creating Virtual Machines 25

OpenNebula 4.6 User Guide, Release 4.6

Let’s see a quick example. To share the Template 0 with users in the group, the USE right bit for GROUP must be set
with the chmod command:

$ onetemplate show 0
...
PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---

$ onetemplate chmod 0 640

$ onetemplate show 0
...
PERMISSIONS
OWNER : um-
GROUP : u--
OTHER : ---

The following command allows users in the same group USE and MANAGE the Template, and the rest of the users
USE it:

$ onetemplate chmod 0 664

$ onetemplate show 0
...
PERMISSIONS
OWNER : um-
GROUP : um-
OTHER : u--

The commands onetemplate publish and onetemplate unpublish are still present for compatibility
with previous versions. These commands set/unset the GROUP USE bit.

1.4.4 Instantiating Templates

The onetemplate instantiate command accepts a Template ID or name, and creates a VM instance (you can
define the number of instances using the -multiple num_of_instances option) from the given template.

$ onetemplate instantiate 6
VM ID: 0

$ onevm list
ID USER GROUP NAME STAT CPU MEM HOSTNAME TIME
0 oneuser1 users one-0 pend 0 0K 00 00:00:16

You can also merge another template to the one being instantiated. The new attributes will be added, or will replace
the ones fom the source template. This can be more convinient that cloning an existing template and updating it.

$ cat /tmp/file
MEMORY = 512
COMMENT = "This is a bigger instance"

$ onetemplate instantiate 6 /tmp/file
VM ID: 1

The same options to create new templates can be used to be merged with an existing one. See the above table, or
execute ‘onetemplate instantiate -help’ for a complete reference.

26 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

$ onetemplate instantiate 6 --cpu 2 --memory 1024
VM ID: 2

Merge Use Case

The template merge functionality, combined with the restricted attibutes, can be used to allow users some degree of
customization for predefined templates.

Let’s say the administrator wants to provide base templates that the users can customize, but with some restrictions.
Having the following restricted attributes in oned.conf :

VM_RESTRICTED_ATTR = "CPU"
VM_RESTRICTED_ATTR = "VPU"
VM_RESTRICTED_ATTR = "NIC"

And the following template:

CPU = "1"
VCPU = "1"
MEMORY = "512"
DISK=[

IMAGE_ID = "0"]
NIC=[

NETWORK_ID = "0"]

Users can instantiate it customizing anything except the CPU, VCPU and NIC. To create a VM with different memory
and disks:

$ onetemplate instantiate 0 --memory 1G --disk "Ubuntu 12.10"

Warning: The merged attributes replace the existing ones. To add a new disk, the current one needs to be added
also.

$ onetemplate instantiate 0 --disk 0,"Ubuntu 12.10"

1.4.5 Deployment

The OpenNebula Scheduler will deploy automatically the VMs in one of the available Hosts, if they meet the require-
ments. The deployment can be forced by an administrator using the onevm deploy command.

Use onevm shutdown to shutdown a running VM.

Continue to the Managing Virtual Machine Instances Guide to learn more about the VM Life Cycle, and the available
operations that can be performed.

1.5 Managing Virtual Machines

This guide follows the Creating Virtual Machines guide. Once a Template is instantiated to a Virtual Machine, there
are a number of operations that can be performed using the onevm command.

1.5. Managing Virtual Machines 27

OpenNebula 4.6 User Guide, Release 4.6

1.5.1 Virtual Machine Life-cycle

The life-cycle of a Virtual Machine within OpenNebula includes the following stages:

Warning: Note that this is a simplified version. If you are a developer you may want to take a look at the complete
diagram referenced in the xml-rpc api page):

Short
state

State Meaning

pend Pending By default a VM starts in the pending state, waiting for a resource to run on. It will stay in
this state until the scheduler decides to deploy it, or the user deploys it using the onevm
deploy command.

hold Hold The owner has held the VM and it will not be scheduled until it is released. It can be,
however, deployed manually.

prol Prolog The system is transferring the VM files (disk images and the recovery file) to the host in
which the virtual machine will be running.

boot Boot OpenNebula is waiting for the hypervisor to create the VM.
runn Running The VM is running (note that this stage includes the internal virtualized machine booting

and shutting down phases). In this state, the virtualization driver will periodically monitor it.
migr Migrate The VM is migrating from one resource to another. This can be a life migration or cold

migration (the VM is saved and VM files are transferred to the new resource).
hotp Hotplug A disk attach/detach, nic attach/detach operation is in process.
snap SnapshotA system snapshot is being taken.
save Save The system is saving the VM files after a migration, stop or suspend operation.
epil Epilog In this phase the system cleans up the Host used to virtualize the VM, and additionally disk

images to be saved are copied back to the system datastore.
shut ShutdownOpenNebula has sent the VM the shutdown ACPI signal, and is waiting for it to complete

the shutdown process. If after a timeout period the VM does not disappear, OpenNebula will
assume that the guest OS ignored the ACPI signal and the VM state will be changed to
running, instead of done.

stop Stopped The VM is stopped. VM state has been saved and it has been transferred back along with the
disk images to the system datastore.

susp SuspendedSame as stopped, but the files are left in the host to later resume the VM there (i.e. there is
no need to re-schedule the VM).

poff PowerOffSame as suspended, but no checkpoint file is generated. Note that the files are left in the host
to later boot the VM there.

unde UndeployedThe VM is shut down. The VM disks are transfered to the system datastore. The VM can be
resumed later.

fail Failed The VM failed.
unkn Unknown The VM couldn’t be reached, it is in an unknown state.
done Done The VM is done. VMs in this state won’t be shown with onevm list but are kept in the

database for accounting purposes. You can still get their information with the onevm show
command.

28 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

1.5.2 Managing Virtual Machines

The following sections show the basics of the onevm command with simple usage examples. A complete reference
for these commands can be found here.

Create and List Existing VMs

Warning: Read the Creating Virtual Machines guide for more information on how to manage and instantiate VM
Templates.

1.5. Managing Virtual Machines 29

OpenNebula 4.6 User Guide, Release 4.6

Warning: Read the complete reference for Virtual Machine templates.

Assuming we have a VM Template registered called vm-example with ID 6, then we can instantiate the VM issuing a:

$ onetemplate list
ID USER GROUP NAME REGTIME
6 oneadmin oneadmin vm_example 09/28 06:44:07

$ onetemplate instantiate vm-example --name my_vm
VM ID: 0

afterwards, the VM can be listed with the onevm list command. You can also use the onevm top command to
list VMs continuously.

$ onevm list
ID USER GROUP NAME STAT CPU MEM HOSTNAME TIME
0 oneadmin oneadmin my_vm pend 0 0K 00 00:00:03

After a Scheduling cycle, the VM will be automatically deployed. But the deployment can also be forced by oneadmin
using onevm deploy:

$ onehost list
ID NAME RVM TCPU FCPU ACPU TMEM FMEM AMEM STAT
2 testbed 0 800 800 800 16G 16G 16G on

$ onevm deploy 0 2

$ onevm list
ID USER GROUP NAME STAT CPU MEM HOSTNAME TIME
0 oneadmin oneadmin my_vm runn 0 0K testbed 00 00:02:40

and details about it can be obtained with show:

$ onevm show 0
VIRTUAL MACHINE 0 INFORMATION
ID : 0
NAME : my_vm
USER : oneadmin
GROUP : oneadmin
STATE : ACTIVE
LCM_STATE : RUNNING
START TIME : 04/14 09:00:24
END TIME : -
DEPLOY ID: : one-0

PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---

VIRTUAL MACHINE MONITORING
NET_TX : 13.05
NET_RX : 0
USED MEMORY : 512
USED CPU : 0

VIRTUAL MACHINE TEMPLATE
...

30 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

VIRTUAL MACHINE HISTORY
SEQ HOSTNAME REASON START TIME PTIME
0 testbed none 09/28 06:48:18 00 00:07:23 00 00:00:00

Terminating VM Instances...

You can terminate a running instance with the following operations (either as onevm commands or through Sunstone):

• shutdown: Gracefully shuts down a running VM, sending the ACPI signal. Once the VM is shutdown the
host is cleaned, and persistent and deferred-snapshot disk will be moved to the associated datastore. If after a
given time the VM is still running (e.g. guest ignoring ACPI signals), OpenNebula will returned the VM to the
RUNNING state.

• shutdown --hard: Same as above but the VM is immediately destroyed. Use this action instead of
shutdown when the VM doesn’t have ACPI support.

If you need to terminate an instance in any state use:

• delete: The VM is immediately destroyed no matter its state. Hosts are cleaned as needed but no images are
moved to the repository, leaving then in error. Think of delete as kill -9 for a process, an so it should be only
used when the VM is not responding to other actions.

All the above operations free the resources used by the VM

Pausing VM Instances...

There are two different ways to temporarily stop the execution of a VM: short and long term pauses. A short term
pause keeps all the VM resources allocated to the hosts so its resume its operation in the same hosts quickly. Use the
following onevm commands or Sunstone actions:

• suspend: the VM state is saved in the running Host. When a suspended VM is resumed, it is immediately
deployed in the same Host by restoring its saved state.

• poweroff: Gracefully powers off a running VM by sending the ACPI signal. It is similar to suspend but
without saving the VM state. When the VM is resumed it will boot immediately in the same Host.

• poweroff --hard: Same as above but the VM is immediately powered off. Use this action when the VM
doesn’t have ACPI support.

You can also plan a long term pause. The Host resources used by the VM are freed and the Host is cleaned. Any
needed disk is saved in the system datastore. The following actions are useful if you want to preserve network and
storage allocations (e.g. IPs, persistent disk images):

• undeploy: Gracefully shuts down a running VM, sending the ACPI signal. The Virtual Machine disks are
transferred back to the system datastore. When an undeployed VM is resumed, it is be moved to the pending
state, and the scheduler will choose where to re-deploy it.

• undeploy --hard: Same as above but the running VM is immediately destroyed.

• stop: Same as undeploy but also the VM state is saved to later resume it.

When the VM is successfully paused you can resume its execution with:

• resume: Resumes the execution of VMs in the stopped, suspended, undeployed and poweroff states.

1.5. Managing Virtual Machines 31

OpenNebula 4.6 User Guide, Release 4.6

Resetting VM Instances...

There are two ways of resetting a VM: in-host and full reset. The first one does not frees any resources and reset a
RUNNING VM instance at the hypervisor level:

• reboot: Gracefully reboots a running VM, sending the ACPI signal.

• reboot --hard: Performs a ‘hard’ reboot.

A VM instance can be reset in any state with:

• delete --recreate: Deletes the VM as described above, but instead of disposing it the VM is moving
again to PENDING state. As the delete operation this action should be used when the VM is not responding to
other actions. Try undeploy or undeploy –hard first.

Delaying VM Instances...

The deployment of a PENDING VM (e.g. after creating or resuming it) can be delayed with:

• hold: Sets the VM to hold state. The scheduler will not deploy VMs in the hold state. Please note that VMs
can be created directly on hold, using ‘onetemplate instantiate –hold’ or ‘onevm create –hold’.

Then you can resume it with:

• release: Releases a VM from hold state, setting it to pending. Note that you can automatically release a VM
by scheduling the operation as explained below

Life-Cycle Operations for Administrators

There are some onevm commands operations meant for the cloud administrators:

Scheduling:

• resched: Sets the reschedule flag for the VM. The Scheduler will migrate (or migrate –live, depending on the
Scheduler configuration) the VM in the next monitorization cycle to a Host that better matches the requirements
and rank restrictions. Read more in the Scheduler documentation.

• unresched: Clears the reschedule flag for the VM, canceling the rescheduling operation.

Deployment:

• deploy: Starts an existing VM in a specific Host.

• migrate --live: The Virtual Machine is transferred between Hosts with no noticeable downtime. This
action requires a shared file system storage.

• migrate: The VM gets stopped and resumed in the target host.

Note: By default, the above operations do not check the target host capacity. You can use the -e (-enforce) option to
be sure that the host capacity is not overcommitted.

Troubleshooting:

• boot: Forces the hypervisor boot action of a VM stuck in UNKNOWN or BOOT state.

• recover: If the VM is stuck in any other state (or the boot operation does not work), you can recover the
VM by simulating the failure or success of the missing action. You have to check the VM state on the host to
decide if the missing action was successful or not.

32 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

Disk Snapshoting

You can take a snapshot of a VM disk to preserve or backup its state at a given point of time. There are two types of
disk snapshots in OpenNebula:

• Deferred snapshots, changes to a disk will be saved as a new Image in the associated datastore when the VM
is shutdown. The new image will be locked till the VM is properly shutdown and the transferred from the host
to the datastore.

• Live snapshots, just as the deferred snapshots, but the disk is copied to the datastore the moment the operation
is triggered. Therefore, you must guarantee that the disk is in a consistent state during the copy operation (e.g.
by umounting the disk from the VM). While the disk is copied to the datastore the VM will be in the HOTPLUG
state.

The onevm disk-snapshot command can be run while the VM is RUNNING, POWEROFF or SUSPENDED.
See the Image guide for specific examples of the disk-snapshot command.

Disk Hotpluging

New disks can be hot-plugged to running VMs with the onevm disk-attach and disk-detach commands. For
example, to attach to a running VM the Image named storage:

$ onevm disk-attach one-5 --image storage

To detach a disk from a running VM, find the disk ID of the Image you want to detach using the onevm show
command, and then simply execute onevm detach vm_id disk_id:

$ onevm show one-5
...
DISK=[

DISK_ID="1",
...

]
...

$ onevm disk-detach one-5 1

1.5. Managing Virtual Machines 33

OpenNebula 4.6 User Guide, Release 4.6

NIC Hotpluging

You can also hotplug network interfaces to a RUNNING VM. Simply, specify the network where the new interface
should be attach to, for example:

$ onevm show 2

VIRTUAL MACHINE 2 INFORMATION
ID : 2
NAME : centos-server
USER : ruben
GROUP : oneadmin
STATE : ACTIVE
LCM_STATE : RUNNING
RESCHED : No
HOST : cloud01

...

VM NICS
ID NETWORK VLAN BRIDGE IP MAC
0 net_172 no vbr0 172.16.0.201 02:00:ac:10:0

VIRTUAL MACHINE HISTORY
SEQ HOST REASON START TIME PROLOG_TIME
0 cloud01 none 03/07 11:37:40 0d 00h02m14s 0d 00h00m00s

...

$ onevm attachnic 2 --network net_172

After the operation you should see two NICs 0 and 1:

34 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

$ onevm show 2
VIRTUAL MACHINE 2 INFORMATION
ID : 2
NAME : centos-server
USER : ruben
GROUP : oneadmin

...

VM NICS
ID NETWORK VLAN BRIDGE IP MAC
0 net_172 no vbr0 172.16.0.201 02:00:ac:10:00:c9

fe80::400:acff:fe10:c9
1 net_172 no vbr0 172.16.0.202 02:00:ac:10:00:ca

fe80::400:acff:fe10:ca
...

Also, you can detach a NIC by its ID. If you want to detach interface 1 (MAC=02:00:ac:10:00:ca), just:

> onevm detachnic 2 1

1.5. Managing Virtual Machines 35

OpenNebula 4.6 User Guide, Release 4.6

Snapshotting

You can create, delete and restore snapshots for running VMs. A snapshot will contain the current disks and memory
state.

Warning: The snapshots will only be available during the RUNNING state. If the state changes (stop, migrate,
etc...) the snapshots will be lost.

$ onevm snapshot-create 4 "just in case"

$ onevm show 4
...
SNAPSHOTS

ID TIME NAME HYPERVISOR_ID
0 02/21 16:05 just in case onesnap-0

$ onevm snapshot-revert 4 0 --verbose
VM 4: snapshot reverted

Please take into consideration the following limitations:

• The snapshots are lost if any life-cycle operation is performed, e.g. a suspend, migrate, delete request.

• KVM: Snapshots are only available if all the VM disks use the qcow2 driver.

• VMware: the snapshots will persist in the hypervisor after any life-cycle operation is performed, but they will
not be available to be used with OpenNebula.

• Xen: does not support snapshotting

Resizing a VM

You may re-size the capacity assigned to a Virtual Machine in terms of the virtual CPUs, memory and CPU allocated.
VM re-sizing can be done when the VM is not ACTIVE, an so in any of the following states: PENDING, HOLD,
FAILED and specially in POWEROFF.

If you have created a Virtual Machine and you need more resources, the following procedure is recommended:

• Perform any operation needed to prepare your Virtual Machine for shutting down, e.g. you may want to manually
stop some services...

• Poweroff the Virtual Machine

• Re-size the VM

• Resume the Virtual Machine using the new capacity

36 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

Note that using this procedure the VM will preserve any resource assigned by OpenNebula (e.g. IP leases)

The following is an example of the previous procedure from the command line (the Sunstone equivalent is straight
forward):

> onevm poweroff web_vm
> onevm resize web_vm --memory 2G --vcpu 2
> onevm resume web_vm

From Sunstone:

Scheduling Actions

Most of the onevm commands accept the ‘–schedule’ option, allowing users to delay the actions until the given date
and time.

Here is an usage example:

$ onevm suspend 0 --schedule "09/20"
VM 0: suspend scheduled at 2013-09-20 00:00:00 +0200

$ onevm resume 0 --schedule "09/23 14:15"
VM 0: resume scheduled at 2013-09-23 14:15:00 +0200

$ onevm show 0
VIRTUAL MACHINE 0 INFORMATION
ID : 0
NAME : one-0

[...]

SCHEDULED ACTIONS
ID ACTION SCHEDULED DONE MESSAGE

1.5. Managing Virtual Machines 37

OpenNebula 4.6 User Guide, Release 4.6

0 suspend 09/20 00:00 -
1 resume 09/23 14:15 -

These actions can be deleted or edited using the ‘onevm update’ command. The time attributes use Unix time inter-
nally.

$ onevm update 0

SCHED_ACTION=[
ACTION="suspend",
ID="0",
TIME="1379628000"]

SCHED_ACTION=[
ACTION="resume",
ID="1",
TIME="1379938500"]

These are the commands that can be scheduled:

• shutdown

• shutdown --hard

• undeploy

• undeploy --hard

• hold

• release

• stop

• suspend

• resume

• boot

• delete

• delete-recreate

• reboot

• reboot --hard

• poweroff

• poweroff --hard

• snapshot-create

User Defined Data

Custom tags can be associated to a VM to store metadata related to this specific VM instance. To add custom attributes
simply use the onevm update command.

$ onevm show 0
...

VIRTUAL MACHINE TEMPLATE
...
VMID="0"

38 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

$ onevm update 0
ROOT_GENERATED_PASSWORD="1234"
~
~

$onevm show 0
...

VIRTUAL MACHINE TEMPLATE
...
VMID="0"

USER TEMPLATE
ROOT_GENERATED_PASSWORD="1234"

Manage VM Permissions

OpenNebula comes with an advanced ACL rules permission mechanism intended for administrators, but each VM
object has also implicit permissions that can be managed by the VM owner. To share a VM instance with other users,
to allow them to list and show its information, use the onevm chmod command:

$ onevm show 0
...
PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---

$ onevm chmod 0 640

$ onevm show 0
...
PERMISSIONS
OWNER : um-
GROUP : u--
OTHER : ---

Administrators can also change the VM’s group and owner with the chgrp and chown commands.

1.5.3 Sunstone

You can manage your virtual machines using the onevm command or Sunstone.

In Sunstone, you can easily instantiate currently defined templates by clicking New on the Virtual Machines tab and
manage the life cycle of the new instances

1.5. Managing Virtual Machines 39

OpenNebula 4.6 User Guide, Release 4.6

Using the noVNC Console

In order to use this feature, make sure that:

• The VM template has a GRAPHICS section defined, that the TYPE attribute in it is set to VNC.

• The specified VNC port on the host on which the VM is deployed is accessible from the Sunstone server host.

• The VM is in running state.

If the VM supports VNC and is running, then the VNC icon on the Virtual Machines view should be visible and
clickable:

When clicking the VNC icon, the process of starting a session begins:

• A request is made and if a VNC session is possible, Sunstone server will add the VM Host to the list of allowed
vnc session targets and create a random token associated to it.

• The server responds with the session token, then a noVNC dialog pops up.

• The VNC console embedded in this dialog will try to connect to the proxy either using websockets (default)
or emulating them using Flash. Only connections providing the right token will be successful. Websockets
are supported from Firefox 4.0 (manual activation required in this version) and Chrome. The token expires and
cannot be reused.

40 Chapter 1. Virtual Resource Management

OpenNebula 4.6 User Guide, Release 4.6

In order to close the VNC session just close the console dialog.

Note: From Sunstone 3.8, a single instance of the VNC proxy is launched when Sunstone server starts. This instance
will listen on a single port and proxy all connections from there.

1.5.4 Information for Developers and Integrators

• Although the default way to create a VM instance is to register a Template and then instantiate it, VMs can be
created directly from a template file using the onevm create command.

• When a VM reaches the done state, it disappears from the onevm list output, but the VM is still in the
database and can be retrieved with the onevm show command.

• OpenNebula comes with an accounting tool that reports resource usage data.

• The monitoring information, shown with nice graphs in Sunstone, can be retrieved using the XML-RPC methods
one.vm.monitoring and one.vmpool.monitoring.

1.5. Managing Virtual Machines 41

OpenNebula 4.6 User Guide, Release 4.6

42 Chapter 1. Virtual Resource Management

CHAPTER

TWO

VIRTUAL MACHINE SETUP

2.1 Contextualization Overview

OpenNebula provides different methods to pass information to a newly created Virtual Machine. This information can
be the network configuration of the VM, user credentials, init scripts and free form data.

• Basic Contextualization: If you only want to configure networking and root ssh keys read this guide.

• Advanced Contextualization: For additional topics in contextualization like adding custom init scripts and vari-
ables also read this guide.

• Cloud-init: To know how to use the cloud-init functionality with OpenNebula check this guide.

• Winwdows Contextualization: Contextualization guide specific for Windows guests. From provisioning to con-
textualization.

2.2 Adding Content to Your Cloud

Once you have setup your OpenNebula cloud you’ll have ready the infrastructure (clusters, hosts, virtual networks and
datastores) but you need to add contents to it for your users. This basically means two different things:

• Add base disk images with OS installations of your choice. Including any software package of interest.

• Define virtual servers in the form of VM Templates. We recommend that VM definitions are made by the
admins as it may require fine or advanced tunning. For example you may want to define a LAMP server with
the capacity to be instantiated in a remote AWS cloud.

When you have basic virtual server definitions the users of your cloud can use them to easily provision VMs, adjusting
basic parameters, like capacity or network connectivity.

There are three basic methods to bootstratp the contents of your cloud, namely:

• External Images. If you already have disk images in any supported format (raw, qcow2, vmdk...) you can just
add them to a datastore. Alternatively you can use any virtualization tool (e.g. virt-manager) to install an image
and then add it to a OpenNebula datastore.

• Install within OpenNebula. You can also use OpenNebula to prepare the images for your cloud. The process
will be as follows:

– Add the installation medium to a OpenNebula datastore. Usually it will be a OS installation CD-
ROM/DVD.

– Create a DATABLOCK image of the desired capacity to install the OS. Once created change its type to OS
and make it persistent.

43

http://cloudinit.readthedocs.org/en/latest/

OpenNebula 4.6 User Guide, Release 4.6

– Create a new template using the previous two images. Make sure to set the OS/BOOT parameter to cdrom
and enable the VNC console.

– Instantiate the template and install the OS and any additional software

– Once you are done, shutdown the VM

• Use the OpenNebula Marketplace. Go to the marketplace tab in Sunstone, and simply pick a disk image with
the OS and Hypervisor of your choice.

Once the images are ready, just create VM templates with the relevant configuration attributes, including default
capacity, networking or any other preset needed by your infrastructure.

You are done, make sure that your cloud users can access the images and templates you have just created.

2.3 Basic Contextualization

This guide shows how to automatically configure networking in the initialization process of the VM. Following are the
instructions to contextualize your images to configure the network. For more in depth information and information on
how to use this information for other duties head to the Advanced Contextualization guide.

2.3.1 Preparing the Virtual Machine Image

To enable the Virtual Machine images to use the contextualization information written by OpenNebula we need to add
to it a series of scripts that will trigger the contextualization.

You can use the images available in the Marketplace, that are already prepared, or prepare your own images. To make
your life easier you can use a couple of Linux packages that do the work for you.

The contextualization package will also mount any partition labeled swap as swap. OpenNebula sets this label for
volatile swap disks.

• Start a image (or finish its installation)

• Install context packages with one of these methods:

– Install from our repositories package one-context in Ubuntu/Debian or opennebula-context in Cen-
tOS/RedHat. Instructions to add the repository at the installation guide.

– Download and install the package for your distribution:

* DEB: Compatible with Ubuntu 11.10 to 14.04 and Debian 6/7

* RPM: Compatible with CentOS and RHEL 6.x

• Shutdown the VM

2.3.2 Preparing the Template

We will also need to add the gateway information to the Virtual Networks that need it. This is an example of a Virtual
Network with gateway information:

NAME=public
NETWORK_ADDRESS=80.0.0.0
NETWORK_MASK=255.255.255.0
GATEWAY=80.0.0.1
DNS="8.8.8.8 8.8.4.4"

44 Chapter 2. Virtual Machine Setup

http://dev.opennebula.org/attachments/download/780/one-context_4.6.0.deb
http://dev.opennebula.org/attachments/download/778/one-context_4.6.0.rpm

OpenNebula 4.6 User Guide, Release 4.6

And then in the VM template contextualization we set NETWORK to yes:

CONTEXT=[
NETWORK=YES]

When the template is instantiated, those parameters for eth0 are automatically set in the VM as:

CONTEXT=[
DISK_ID="0",
ETH0_DNS="8.8.8.8 8.8.4.4",
ETH0_GATEWAY="80.0.0.1",
ETH0_IP="80.0.0.2",
ETH0_MASK="255.255.255.0",
ETH0_NETWORK="80.0.0.0",
NETWORK="YES",
TARGET="hda"]

If you add more that one interface to a Virtual Machine you will end with same parameters changing ETH0 to ETH1,
ETH2, etc.

You can also add SSH_PUBLIC_KEY parameter to the context to add a SSH public key to the authorized_keys
file of root.

CONTEXT=[
SSH_PUBLIC_KEY = "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC+vPFFwem49zcepQxsyO51YMSpuywwt6GazgpJe9vQzw3BA97tFrU5zABDLV6GHnI0/ARqsXRX1mWGwOlZkVBl4yhGSK9xSnzBPXqmKdb4TluVgV5u7R5ZjmVGjCYyYVaK7BtIEx3ZQGMbLQ6Av3IFND+EEzf04NeSJYcg9LA3lKIueLHNED1x/6e7uoNW2/VvNhKK5Ajt56yupRS9mnWTjZUM9cTvlhp/Ss1T10iQ51XEVTQfS2VM2y0ZLdfY5nivIIvj5ooGLaYfv8L4VY57zTKBafyWyRZk1PugMdGHxycEh8ek8VZ3wUgltnK+US3rYUTkX9jj+Km/VGhDRehp user@host"

]

If you want to known more in deep the contextualization options head to the Advanced Contextualization guide.

2.4 Advanced Contextualization

There are two contextualization mechanisms available in OpenNebula: the automatic IP assignment, and a more
generic way to give any file and configuration parameters. You can use any of them individually, or both.

You can use already made packages that install context scripts and prepare udev configuration in your appliances. This
is described in Contextualization Packages for VM Images section.

2.4.1 Automatic IP Assignment

With OpenNebula you can derive the IP address assigned to the VM from the MAC address using the
MAC_PREFFIX:IP rule. In order to achieve this we provide context scripts for Debian, Ubuntu, CentOS and open-
SUSE based systems. These scripts can be easily adapted for other distributions, check dev.opennebula.org.

To configure the Virtual Machine follow these steps:

Warning: These actions are to configure the VM, the commands refer to the VMs root file system

• Copy the script $ONE_SRC_CODE_PATH/share/scripts/vmcontext.sh into the /etc/init.d di-
rectory in the VM root file system.

• Execute the script at boot time before starting any network service, usually runlevel 2 should work.

$ ln /etc/init.d/vmcontext.sh /etc/rc2.d/S01vmcontext.sh

Having done so, whenever the VM boots it will execute this script, which in turn would scan the avail-
able network interfaces, extract their MAC addresses, make the MAC to IP conversion and construct a
/etc/network/interfaces that will ensure the correct IP assignment to the corresponding interface.

2.4. Advanced Contextualization 45

http://dev.opennebula.org/projects/opennebula/repository/show/share/scripts

OpenNebula 4.6 User Guide, Release 4.6

2.4.2 Generic Contextualization

The method we provide to give configuration parameters to a newly started virtual machine is using an ISO image
(OVF recommendation). This method is network agnostic so it can be used also to configure network interfaces. In
the VM description file you can specify the contents of the iso file (files and directories), tell the device the ISO image
will be accessible and specify the configuration parameters that will be written to a file for later use inside the virtual
machine.

In this example we see a Virtual Machine with two associated disks. The Disk Image holds the filesystem where the
Operating System will run from. The ISO image has the contextualization for that VM:

• context.sh: file that contains configuration variables, filled by OpenNebula with the parameters specified in
the VM description file

• init.sh: script called by VM at start that will configure specific services for this VM instance

• certificates: directory that contains certificates for some service

• service.conf: service configuration

Warning: This is just an example of what a contextualization image may look like. Only context.sh is
included by default. You have to specify the values that will be written inside context.sh and the files that will
be included in the image.

Warning: To prevent regular users to copy system/secure files, the FILES attribute within CONTEXT is only
allowed to OpenNebula users within the oneadmin group. FILES_DS can be used to include arbitrary files from
Files Datastores.

Defining Context

In VM description file you can tell OpenNebula to create a contextualization image and to fill it with values using
CONTEXT parameter. For example:

CONTEXT = [
hostname = "MAINHOST",
ip_private = "$NIC[IP, NETWORK=\"public net\"]",
dns = "$NETWORK[DNS, NETWORK_ID=0]",

46 Chapter 2. Virtual Machine Setup

OpenNebula 4.6 User Guide, Release 4.6

root_pass = "$IMAGE[ROOT_PASS, IMAGE_ID=3]",
ip_gen = "10.0.0.$VMID",
files_ds = "$FILE[IMAGE=\"certificate\"] $FILE[IMAGE=\"server_license\"]"

]

Variables inside CONTEXT section will be added to context.sh file inside the contextualization image. These
variables can be specified in three different ways:

Hardcoded variables

hostname = "MAINHOST"

Using template variables

$<template_variable>: any single value variable of the VM template, like for example:

ip_gen = "10.0.0.$VMID"

$<template_variable>[<attribute>]: Any single value contained in a multiple value variable in the VM
template, like for example:

ip_private = $NIC[IP]

$<template_variable>[<attribute>, <attribute2>=<value2>]: Any single value contained in a
multiple value variable in the VM template, setting one attribute to discern between multiple variables called the same
way, like for example:

ip_public = "$NIC[IP, NETWORK=\"Public\"]"

You can use any of the attributes defined in the variable, NIC in the previous example.

Using Virtual Network template variables

$NETWORK[<vnet_attribute>, <NETWORK_ID|NETWORK>=<vnet_id|vnet_name>]: Any single
value variable in the Virtual Network template, like for example:

dns = "$NETWORK[DNS, NETWORK_ID=3]"

Using Image template variables

$IMAGE[<image_attribute>, <IMAGE_ID|IMAGE>=<img_id|img_name>]: Any single value vari-
able in the Image template, like for example:

root = "$IMAGE[ROOT_PASS, IMAGE_ID=0]"

Note that the image MUST be in used by any of the DISKs defined in the template. The image_attribute can be ‘‘TEMPLATE‘‘ to include the whole image template in XML (base64 encoded).

Using User template variables

$USER[<user_attribute>]: Any single value variable in the user (owner of the VM) template, like for example:

2.4. Advanced Contextualization 47

OpenNebula 4.6 User Guide, Release 4.6

ssh_key = "$USER[SSH_KEY]"

The user_attribute can be TEMPLATE to include the whole user template in XML (base64 encoded).

Pre-defined variables, apart from those defined in the template you can use:

• $UID, the uid of the VM owner

• $UNAME, the VM owner user name

• $GID, the id of the VM group

• $GNAME, the VM group name

• $TEMPLATE, the whole template in XML format and encoded in base64

The file generated will be something like this:

Context variables generated by OpenNebula
hostname="MAINHOST"
ip_private="192.168.0.5"
dns="192.168.4.9"
ip_gen="10.0.0.85"
files_ds="/home/cloud/var/datastores/2/3fae86a862b7539b41de350e8fa56100 /home/cloud/var/datastores/2/40bf97b973c864ac52ef461f90b67211"
target="sdb"
root="13.0"

Some of the variables have special meanings, but none of them are mandatory:

Attribute Description
files_ds Files that will be included in the contextualization image. Each file must be stored in a FILE_DS

Datastore and must be of type CONTEXT
target device where the contextualization image will be available to the VM instance. Please note that the

proper device mapping may depend on the guest OS, e.g. ubuntu VMs should use hd* as the target
device

file Files and directories that will be included in the contextualization image. Specified as absolute
paths, by default this can be used only by oneadmin.

init_scripts If you want the VM to execute an script that is not called init.sh (or if you want to call more than
just one script),this list contains the scripts to run and their order. Ex. init.sh users.sh
mysql.sh will force the VM to execute init.sh , then users.sh and lastly mysql.sh at boot time’

TOKEN YES to create a token.txt file for OneGate monitorization
NET-
WORK

YES to fill automatically the networking parameters for each NIC, used by the Contextualization
packages

SET_HOSTNAMEThis parameter value will be the hostname of the VM.
DNS_HOSTNAMEYES to set the VM hostname to the reverse dns name (from the first IP)

Warning: A default target attribute is generated automatically by OpenNebula, based on the default device prefix
set at oned.conf.

Contextualization Packages for VM Images

The VM should be prepared to use the contextualization image. First of all it needs to mount the contextualization
image somewhere at boot time. Also a script that executes after boot will be useful to make use of the information
provided.

The file context.sh is compatible with bash syntax so you can easilly source it inside a shellscript to get the
variables that it contains.

48 Chapter 2. Virtual Machine Setup

OpenNebula 4.6 User Guide, Release 4.6

Contextualization packages are available to several distributions so you can prepare them to work with OpenNebula
without much effort. These are the changes they do to your VM:

• Disables udev net and cd persistent rules

• Deletes udev net and cd persistent rules

• Unconfigures the network

• Adds OpenNebula contextualization scripts to startup

Warning: These packages are destructive. The configuration for networking will be deleted. Make sure to use
this script on copies of your images.

Instructions on how to install the contextualization packages are located in the contextualization overview documenta-
tion.

After the installation of these packages the images on start will configure the network using the mac address generated
by OpenNebula. They will also try to mount the cdrom context image from /dev/cdrom and if init.sh is found
it will be executed.

Network Configuration

These packages also install a generic network configuration script that will get network information from some con-
textualization parameters and also root SSH key. This way we don’t have to supply an init.sh script to do this
work. The parameters that these scripts will use are as follows:

Attribute Description
<DEV>_MAC MAC address of the interface
<DEV>_IP IP assigned to the interface
<DEV>_NETWORK Interface network
<DEV>_MASK Interface net mask
<DEV>_GATEWAY Interface gateway
<DEV>_DNS DNS servers for the network
<DEV>_SEARCH_DOMAIN DNS domain search path
<DEV>_IPV6 Global IPv6 assigned to the interface
<DEV>_GATEWAY6 IPv6 gateway for this interface
<DEV>_CONTEXT_FORCE_IPV4 Configure IPv4 even if IPv6 values are present
DNS main DNS server for the machine
SSH_PUBLIC_KEY public ssh key added to root authorized_keys

We can have the networks defined with those parameters and use them to configure the interfaces. Given these two
networks (excerpt):

Public:

NAME = public
TYPE = RANGED
NETWORK_ADDRESS = 130.10.0.0
NETWORK_MASK = 255.255.255.0
GATEWAY = 130.10.0.1
DNS = "8.8.8.8 8.8.4.4"

Private:

NAME = private
TYPE = RANGED
NETWORK_ADDRESS = 10.0.0.0
NETWORK_MASK = 255.255.0.0

2.4. Advanced Contextualization 49

OpenNebula 4.6 User Guide, Release 4.6

We can configure both networks adding this context to the VM template:

CONTEXT=[
NETWORK="YES",
SSH_PUBLIC_KEY="$USER[SSH_PUBLIC_KEY]"]

NIC=[
NETWORK="public"]

NIC=[
NETWORK="private"]

Please note that SSH_PUBLIC_KEY was added as a user attribute, this way the templates can be generic.

When this template is instantiated, the context section will contain all the relevant networking attributes:

CONTEXT=[
DISK_ID="0",

ETH0_DNS="8.8.8.8 8.8.4.4",
ETH0_GATEWAY="130.10.0.1",
ETH0_IP="130.10.0.1",
ETH0_MASK="255.255.255.0",
ETH0_NETWORK="130.10.0.0",

ETH1_IP="10.0.0.1",
ETH1_MASK="255.255.0.0",
ETH1_NETWORK="10.0.0.0",

NETWORK="YES",
SSH_PUBLIC_KEY="ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC+vPFFwem49zcepQxsyO51YMSpuywwt6GazgpJe9vQzw3BA97tFrU5zABDLV6GHnI0/ARqsXRX1mWGwOlZkVBl4yhGSK9xSnzBPXqmKdb4TluVgV5u7R5ZjmVGjCYyYVaK7BtIEx3ZQGMbLQ6Av3IFND+EEzf04NeSJYcg9LA3lKIueLHNED1x/6e7uoNW2/VvNhKK5Ajt56yupRS9mnWTjZUM9cTvlhp/Ss1T10iQ51XEVTQfS2VM2y0ZLdfY5nivIIvj5ooGLaYfv8L4VY57zTKBafyWyRZk1PugMdGHxycEh8ek8VZ3wUgltnK+US3rYUTkX9jj+Km/VGhDRehp user@host"
TARGET="hda"]

2.4.3 Generating Custom Contextualization Packages

Network configuration is a script located in /etc/one-context.d/00-network. Any file located in that di-
rectory will be executed on start, in alphabetical order. This way we can add any script to configure or start processes
on boot. For example, we can have a script that populates authorized_keys file using a variable in the context.sh.
Remember that those variables are exported to the environment and will be easily accessible by the scripts:

#!/bin/bash
echo "$SSH_PUBLIC_KEY" > /root/.ssh/authorized_keys

OpenNebula source code comes with the scripts and the files needed to generate contextualization packages. This way
you can also generate custom packages tweaking the scripts that will go inside your images or adding new scripts that
will perform other duties.

The files are located in share/scripts/context-packages:

• base: files that will be in all the packages. Right now it contains empty udev rules and the init script that will
be executed on startup.

• base_<type>: files specific for linux distributions. It contains the contextualization scripts for the network
and comes in rpm and deb flavors. You can add here your own contextualization scripts and they will be added
to the package when you run the generation script.

• generate.sh: The script that generates the packages.

• postinstall: This script will be executed after the package installation and will clean the network and udev
configuration. It will also add the init script to the started services on boot.

50 Chapter 2. Virtual Machine Setup

OpenNebula 4.6 User Guide, Release 4.6

To generate the packages you will need:

• Ruby >= 1.8.7

• gem fpm

• dpkg utils for deb package creation

• rpm utils for rpm package creation

You can also give to the generation script some parameters using env variables to generate the packages. For example,
to generate an rpm package you will execute:

$ PACKAGE_TYPE=rpm ./generate.sh

These are the default values of the parameters, but you can change any of them the same way we did for
PACKAGE_TYPE:

VERSION=4.4.0
MAINTAINER=C12G Labs <support@c12g.com>
LICENSE=Apache
PACKAGE_NAME=one-context
VENDOR=C12G Labs
DESCRIPTION="
This package prepares a VM image for OpenNebula:

* Disables udev net and cd persistent rules

* Deletes udev net and cd persistent rules

* Unconfigures the network

* Adds OpenNebula contextualization scripts to startup

To get support use the OpenNebula mailing list:
http://opennebula.org/community:mailinglists

"
PACKAGE_TYPE=deb
URL=http://opennebula.org

For more information check the README.md file from that directory.

2.5 Windows Contextualization

This guide describes the standard process of provisioning and contextualizing a Windows guest.

Note: This guide has been tested for Windows 2008 R2, however it should work with Windows systems >= Windows
7.

2.5.1 Provisioning

Installation

Provisioning a Windows VM is performed the standard way in OpenNebula:

1. Register the Installation media (typically a DVD) into a Datastore

2. Create an empty datablock with an appropriate size, at least 10GB. Change the type to OS. If you are using a
qcow2 image, don’t forget to add DRIVER=qcow2 and FORMAT=qcow2.

2.5. Windows Contextualization 51

OpenNebula 4.6 User Guide, Release 4.6

3. Create a template that boots from CDROM, enables VNC, and references the Installation media and the Image
created in step 2.

4. Follow the typical installation procedure over VNC.

5. Perform a deferred disk-snapshot of the OS disk, which will be saved upon shutdown.

6. Shutdown the VM.

The resulting image will boot under any OpenNebula cloud that uses KVM or VMware, and for any storage subsystem.
However it hasn’t been contextualized, therefore it will only obtain its IP via DHCP. To apply contextualization please
follow the Contextualization section.

Sysprep

If you are adapting a pre-existing Windows VM to run in an OpenNebula environment, and you want to remove all
the pre-existing senstitive data in order to be able to clone and deliver it to third party users, it’s highly recommended
to run Sysprep on the image. To do so simply run c:\Windows\System32\sysprep\sysprep.exe. Select
OOBE and Generalize.

2.5.2 Contextualization

Enabling Contextualization

The official addon-opennebula-context provides all the necessary files to run the contextualization in Windows 2008
R2.

The contextualization procedure is as follows:

1. Download startup.vbs to the Windows VM (you can also send it via Context files) and write it to a path
under C:.

2. Open the Local Group Policy Dialog by running gpedit.msc. Under: Computer Configuration -> Windows
Settings -> Scripts -> startup (right click); browse to the startup.vbs file and enable it as a startup script.

Save the image by performing a deferred disk-snapshot of the OS disk, which will be saved upon shutdown.

To use the Windows contextualization script you need to use the previously prepared Windows image and include into
the CONTEXT files the context.ps1 script available here.

Warning: The context.ps1 name matters. If changed, the script will not run.

Features

The context.ps1 script will:

• Add a new user (using USERNAME and PASSWORD).

• Rename the server (using SET_HOSTNAME).

• Enable Remote Desktop.

• Enable Ping.

• Configure the Network, using the automatically generated networking variables in the CONTEXT CD-ROM.

• Run arbritary PowerShell scripts available in the CONTEXT CD-ROM and referenced by the INIT_SCRIPTS
variable.

52 Chapter 2. Virtual Machine Setup

http://en.wikipedia.org/wiki/Sysprep
https://github.com/OpenNebula/addon-context-windows
https://github.com/OpenNebula/addon-context-windows

OpenNebula 4.6 User Guide, Release 4.6

Variables

The contextualization variables supported by the Windows context script are very similar to the ones in Linux except
for a few Windows-specific exceptions.

This is the list of supported variables:

• <DEV>_MAC: MAC address of the interface.

• <DEV>_IP: IP assigned to the interface.

• <DEV>_NETWORK: Interface network.

• <DEV>_MASK: Interface net mask.

• <DEV>_GATEWAY: Interface gateway.

• <DEV>_DNS: DNS servers for the network.

• <DEV>_SEARCH_DOMAIN: DNS domain search path.

• DNS: main DNS server for the machine.

• SET_HOSTNAME: Set the hostname of the machine.

• INIT_SCRIPTS: List of PowerShell scripts to be executed. Must be available in the CONTEXT CD-ROM.

• USERNAME: Create a new user.

• PASSWORD: Password for the new user.

Customization

The context.ps1 script has been designed to be easily hacked and modified. Perform any changes to that script
and use it locally.

2.6 Cloud-init

Since version 0.7.3 of cloud-init packages the OpenNebula context CD is supported. It is able to get and configure
networking, hostname, ssh key for root and cloud-init user data. Here are the options in a table:

Option Description
standard network options OpenNebula network parameters in the context added by NETWORK=yes
HOSTNAME VM hostname
SSH_PUBLIC_KEY ssh public key added to root’s authorized keys
USER_DATA Specific user data for cloud-init
DSMODE Can be set to local, net or disabled to change cloud-init datasource mode

You have more information on how to use it at the cloud-init documentation page.

There are plenty of examples on what can go in the USER_DATA string at the cloud-init examples page.

Warning: The current version of cloud-init configures the network before running cloud-init configuration. This
makes the network configuration not reliable. Until a new version that fixes this is released you can add OpenNeb-
ula context packages or this user data to reboot the machine so the network is properly configured.

2.6. Cloud-init 53

http://cloudinit.readthedocs.org/en/latest/topics/datasources.html#opennebula
http://cloudinit.readthedocs.org/en/latest/topics/examples.html

OpenNebula 4.6 User Guide, Release 4.6

CONTEXT=[
USER_DATA="#cloud-config

power_state:
mode: reboot

"]

2.6.1 Platform Specific Notes

CentOS

Works correctly for cloud-init >= 0.7.4.

Ubuntu/Debian

To make it configure the network correctly it needs to be down so the network configuration part makes its work:

CONTEXT=[
NETWORK="YES",
SSH_PUBLIC_KEY="$USER[SSH_PUBLIC_KEY]",
USER_DATA="#cloud-config

bootcmd:
- ifdown -a

runcmd:
- curl http://10.0.1.1:8999/I_am_alive

write_files:
- encoding: b64

content: RG9lcyBpdCB3b3JrPwo=
owner: root:root
path: /etc/test_file
permissions: ’0644’

packages:
- ruby2.0"]

54 Chapter 2. Virtual Machine Setup

CHAPTER

THREE

OPENNEBULA MARKETPLACE

3.1 Interacting with the OpenNebula Marketplace

The OpenNebula Marketplace is a catalog of third party virtual appliances ready to run in OpenNebula environments.
The OpenNebula Marketplace only contains appliances metadata. The images and files required by an appliance will
not be stored in the Marketplace, but links to them.

55

OpenNebula 4.6 User Guide, Release 4.6

3.1.1 Using Sunstone to Interact with the OpenNebula Marketplace

Since the release 3.6, Sunstone includes a new tab that allows OpenNebula users to interact with the OpenNebula
Marketplace:

If you want to import a new appliance into your local infrastructure, you just have to select an image and click the
button import. A new dialog box will prompt you to create a new image.

56 Chapter 3. OpenNebula Marketplace

OpenNebula 4.6 User Guide, Release 4.6

After that you will be able use that image in a template in order to create a new instance.

3.1.2 Using the CLI to Interact with the OpenNebula Marketplace

You can also use the CLI to interact with the OpenNebula Marketplace:

• List appliances:

$ onemarket list --server http://marketplace.c12g.com
ID NAME PUBLISHER

4fc76a938fb81d3517000001 Ubuntu Server 12.04 LTS (Precise Pangolin) OpenNebula.org
4fc76a938fb81d3517000002 CentOS 6.2 OpenNebula.org
4fc76a938fb81d3517000003 ttylinux OpenNebula.org
4fc76a938fb81d3517000004 OpenNebula Sandbox VMware 3.4.1 C12G Labs
4fcf5d0a8fb81d1bb8000001 OpenNebula Sandbox KVM 3.4.1 C12G Labs

• Show an appliance:

$ onemarket show 4fc76a938fb81d3517000004 --server http://marketplace.c12g.com
{

"_id": {"$oid": "4fc76a938fb81d3517000004"},
"catalog": "public",
"description": "This image is meant to be run on a ESX hypervisor, and comes with a preconfigured OpenNebula 3.4.1, ready to manage a ESX farm. Several resources are created within OpenNebula (images, virtual networks, VM templates) to build a pilot cloud under 30 minutes.\n\nMore information can be found on the OpenNebula Sandbox: VMware-based OpenNebula Cloud guide.\n\nThe login information for this VM is\n\nlogin: root\npassword: opennebula",

3.1. Interacting with the OpenNebula Marketplace 57

OpenNebula 4.6 User Guide, Release 4.6

"downloads": 90,
"files": [
{

"type": "OS",
"hypervisor": "ESX",
"format": "VMDK",
"size": 693729120,
"compression": "gzip",
"os-id": "CentOS",
"os-release": "6.2",
"os-arch": "x86_64",
"checksum": {

"md5": "2dba351902bffb4716168f3693e932e2"
}

}
],
"logo": "/img/logos/view_dashboard.png",
"name": "OpenNebula Sandbox VMware 3.4.1",
"opennebula_template": "",
"opennebula_version": "",
"publisher": "C12G Labs",
"tags": [
"linux",
"vmware",
"sandbox",
"esx",
"frontend"

],
"links": {
"download": {

"href": "http://marketplace.c12g.com/appliance/4fc76a938fb81d3517000004/download"
}

}
}

• Create a new image: You can use the download link as PATH in a new Image template to create am Image.

$ onemarket show 4fc76a938fb81d3517000004 --server http://marketplace.c12g.com
{

...
"links": {
"download": {

"href": "http://marketplace.c12g.com/appliance/4fc76a938fb81d3517000004/download"
}

}
}

$ cat marketplace_image.one
NAME = "OpenNebula Sandbox VMware 3.4.1"
PATH = http://marketplace.c12g.com/appliance/4fc76a938fb81d3517000004/download
TYPE = OS

$ oneimage create marketplace_image.one
ID: 1231

58 Chapter 3. OpenNebula Marketplace

OpenNebula 4.6 User Guide, Release 4.6

3.2 Howto Create Apps for the Marketplace

In this section some general guidelines on creating OpenNebula compatible images for the marketplace are described.
Following this you will find a tutorial showing how to create an Ubuntu 12.04 image ready to distribute it in the
marketplace.

3.2.1 Image Creation Guidelines

Images in the marketplace are just direct installation of OS, prepared to run with OpenNebula. There are two basic
things you need to do (apart from the standard OS installation):

• Add OpenNebula contextualization script, so the image is able to receive and use context information

• Disable udev network rule writing, usually images are cloned multiple times, using different MAC addresses
each time. In this case, you’ll need to disable udev to prevent getting a new interface each time.

These both steps can be automated in some distributions (Debian, Ubuntu, CentOS and RHEL) using preparation
packages. You can find the packages and more information about them at the Contextualization Packages for VM
Images section.

Add OpenNebula Contextualization Script

The contextualization scripts configure the VM on startup. You can find the scripts for different distributions at the
OpenNebula repository. Depending on the distribution the method of installation is different so refer to the distribution
documentation to do so. Make sure that these scripts are executed before the network is initialized.

You can find more information about contextualization in the Contextualizing Virtual Machines guide.

Disable udev Network Rule Writing

Most linux distribution upon start search for new devices and write the configuration for them. This fixes the network
device for each different network mac address. This is a bad behavir in VM images as they will be used to run with
very different mac addresses. You need to disable this udev configuration saving and also delete any udev network
rule that could be already saved.

3.2.2 Tutorial: Preparing an Ubuntu 12.04 Xen for the Marketplace

The installation is based on the Ubuntu documentation.

You will need a machine where xen is correctly configured, a bridge with internet connection and a public IP or a
private IP with access to a router that can connecto the internet.

First we create an empty disk, in this case it will be 8 Gb:

$ dd if=/dev/zero of=ubuntu.img bs=1 count=1 seek=8G

Then we download netboot kernel and initrd compatible with Xen. We are using a mirror near to us but you can select
one from the Ubuntu mirrors list:

$ wget http://ftp.dat.etsit.upm.es/ubuntu/dists/precise/main/installer-amd64/current/images/netboot/xen/vmlinuz
$ wget http://ftp.dat.etsit.upm.es/ubuntu/dists/precise/main/installer-amd64/current/images/netboot/xen/initrd.gz

Now we can create a file describing the VM where the ubuntu will be installed:

3.2. Howto Create Apps for the Marketplace 59

http://dev.opennebula.org/projects/opennebula/repository/revisions/master/show/share/scripts
https://help.ubuntu.com/community/XenProposed#Manually_creating_a_PV_Guest_VM
https://launchpad.net/ubuntu/+archivemirrors

OpenNebula 4.6 User Guide, Release 4.6

name = "ubuntu"

memory = 256

disk = [’file:PATH/ubuntu.img,xvda,w’]
vif = [’bridge=BRIDGE’]

kernel = "PATH/vmlinuz"
ramdisk = "PATH/initrd.gz"

Change PATH to the path where the VM files are located and BRIDGE to the name of the network bridge you are
going to use. After this we can start the VM:

$ sudo xm create ubuntu.xen

To connect to the VM console and proceed with the installation you can use xm console command:

$ sudo xm console ubuntu

Use the menus to configure your VM. Make sure that you configure the network correctly as this installation will use
it to download packages.

After the installation is done it will reboot again into the installation. You can exit the console pressing <CTRL>+<]>.
Now you should shutdown the machine:

$ sudo xm shutdown ubuntu

The system is now installed in the disk image and now we must start it to configure it so it plays nice with OpenNebula.
The configuratio we are going to do is:

• Disable udev network generation rules and clean any that could be saved

• Add contextualization scripts

To start the VM we will need a new xen description file:

name = "ubuntu1204"

memory = 512

disk = [’file:PATH/ubuntu.img,xvda,w’]
vif = [’bridge=BRIDGE’]

bootloader = "pygrub"

It is pretty similar to the other one but notice that we no longer specify kernel nor initrd and we also add the bootloader
option. This will make out VM use the kernel and initrd that reside inside out VM image.

We can start it using the same command as before:

$ sudo xm create ubuntu-new.xen

And the console also works the same as before:

$ sudo xm console ubuntu

We log and become root. To disable udev network rule generation we should edit the file
/lib/udev/rules.d/75-persistent-net-generator.rules and comment the line that says:

DRIVERS=="?*", IMPORT{program}="write_net_rules"

60 Chapter 3. OpenNebula Marketplace

OpenNebula 4.6 User Guide, Release 4.6

Now to make sure that no network rules are saved we can empty the rules file:

echo ’’ > /etc/udev/rules.d/70-persistent-net.rules

Copy the contextualiza located at the OpenNebula repository to /etc/init.d and give it write permissions. This
is the script that will contextualize the VM on start.

Now we modify the file /etc/init/networking.conf and change the line:

pre-start exec mkdir -p /run/network

with

pre-start script
mkdir -p /run/network
/etc/init.d/vmcontext

end script

and also in /etc/init/network-interface.conf we add the line:

/etc/init.d/vmcontext

so it looks similar to:

pre-start script
/etc/init.d/vmcontext
if ["$INTERFACE" = lo]; then

bring this up even if /etc/network/interfaces is broken
ifconfig lo 127.0.0.1 up || true
initctl emit -n net-device-up \

IFACE=lo LOGICAL=lo ADDRFAM=inet METHOD=loopback || true
fi
mkdir -p /run/network
exec ifup --allow auto $INTERFACE

end script

3.2. Howto Create Apps for the Marketplace 61

http://dev.opennebula.org/projects/opennebula/repository/revisions/master/entry/share/scripts/ubuntu/net-vmcontext/vmcontext

OpenNebula 4.6 User Guide, Release 4.6

62 Chapter 3. OpenNebula Marketplace

CHAPTER

FOUR

REFERENCES

4.1 Virtual Machine Definition File

A template file consists of a set of attributes that defines a Virtual Machine. Using the command onetemplate
create, a template can be registered in OpenNebula to be later instantiated. For compatibility with previous versions,
you can also create a new Virtual Machine directly from a template file, using the onevm create command.

Warning: There are some template attributes that can compromise the security of the system or the security of
other VMs, and can be used only by users in the oneadmin group. These attributes can be configured in oned.conf,
the default ones are labeled with * in the following tables. See the complete list in the Restricted Attributes section.

4.1.1 Syntax

The syntax of the template file is as follows:

• Anything behind the pound or hash sign # is a comment.

• Strings are delimited with double quotes ", if a double quote is part of the string it needs to be escaped \\".

• Single Attributes are in the form:

NAME=VALUE

• Vector Attributes that contain several values can be defined as follows:

NAME=[NAME1=VALUE1,NAME2=VALUE2]

• Vector Attributes must contain at least one value.

• Attribute names are case insensitive, in fact the names are converted to uppercase internally.

4.1.2 XML Syntax

Since OpenNebula 3.4, template files can be in XML, with the following syntax:

• The root element must be TEMPLATE

• Single Attributes are in the form:

<NAME>VALUE</NAME>

• Vector Attributes that contain several values can be defined as follows:

63

OpenNebula 4.6 User Guide, Release 4.6

<NAME>
<NAME1>VALUE1</NAME1>
<NAME2>VALUE2</NAME2>

</NAME>

A simple example:

<TEMPLATE>
<NAME>test_vm</NAME>
<CPU>2</CPU>
<MEMORY>1024</MEMORY>
<DISK>
<IMAGE_ID>2</IMAGE_ID>

</DISK>
<DISK>
<IMAGE>Data</IMAGE>
<IMAGE_UNAME>oneadmin</IMAGE_UNAME>

</DISK>
</TEMPLATE>

4.1.3 Capacity Section

The following attributes can be defined to specified the capacity of a VM.

Attribute Description Mandatory
NAME Name that the VM will get for de-

scription purposes. If NAME is not
supplied a name generated by one
will be in the form of one-<VID>.
NOTE: When defining a Template it
is the name of the VM Template. The
actual name of the VM will be set
when the VM Template is instanti-
ated.

YES For Templates NO For VMs -
will be set to one-<vmid> if
omitted

MEMORY Amount of RAM required for the
VM, in Megabytes.

YES

CPU Percentage of CPU divided by 100 re-
quired for the Virtual Machine, half a
processor is written 0.5. This value is
used by OpenNebula and the sched-
uler to guide the host overcommit-
ment.

YES

VCPU Number of virtual cpus. This value is
optional, the default hypervisor be-
havior is used, usually one virtual
CPU.

YES - will be set to 1 if omitted, this
can be changed in the driver configu-
ration

Example:

NAME = test-vm
MEMORY = 128
CPU = 1

64 Chapter 4. References

OpenNebula 4.6 User Guide, Release 4.6

4.1.4 OS and Boot Options Section

The OS system is defined with the OS vector attribute. The following sub-attributes are supported:

Note the hypervisor column states that the attribute is Optional, Mandatory, or - not supported for that hypervisor

OS Sub-Attribute Description XEN KVM VMWARE
ARCH CPU architecture to

virtualize
• M (default i686) M (default i686)

MACHINE libvirt machine type.
Check libvirt capa-
bilities for the list
of available machine
types.

• O •

KERNEL path to the OS kernel
to boot the image in
the host

O see (*) O •

KERNEL_DS image to be used as
kernel (see !!)

O see (*) O •

INITRD path to the initrd im-
age in the host

O (for kernel) O (for kernel) •

INITRD_DS image to be used as
ramdisk (see !!)

O (for kernel) O (for kernel) •

ROOT device to be mounted
as root

O (for kernel) O (for kernel) •

KERNEL_CMD arguments for the
booting kernel

O (for kernel) O (for kernel) •

BOOTLOADER path to the bootloader
executable

O see (*) O •

BOOT comma separated
list of boot devices
types, by order of
preference (first de-
vice in the list is the
first device used for
boot). Possible val-
ues: hd,fd,cdrom
,network

O (only HVM) M •

(*) If no kernel/initrd or bootloader are specified a Xen HVM will be created.

(!!) Use one of KERNEL_DS or KERNEL (and INITRD or INITRD_DS).

KERNEL_DS and INITRD_DS refer to and image registered in a File Datastore and must be of type KERNEL and
RAMDISK, respectively. The image should be refer using one of the following:

• $FILE[IMAGE=<image name>], to select own files

• $FILE[IMAGE=<image name>, <IMAGE_UNAME|IMAGE_UID>=<owner name|owner id>], to
select images owned by other users, by user name or uid.

• $FILE[IMAGE_ID=<image id>], global file selection

Example, a VM booting from sda1 with kernel /vmlinuz :

4.1. Virtual Machine Definition File 65

OpenNebula 4.6 User Guide, Release 4.6

OS = [KERNEL = /vmlinuz,
INITRD = /initrd.img,
ROOT = sda1,
KERNEL_CMD = "ro xencons=tty console=tty1"]

OS = [KERNEL_DS = "$FILE[IMAGE=\"kernel 3.6\"]",
INITRD_DS = "$FILE[IMAGE=\"initrd 3.6\"]",
ROOT = sda1,
KERNEL_CMD = "ro xencons=tty console=tty1"]

4.1.5 Features Section

This section configures the features enabled for the VM.

Note the hypervisor column states that the attribute is Optional or - not supported for that hypervisor

Sub-Attribute Description XEN HVM KVM
PAE Physical address extension

mode allows 32-bit guests
to address more than 4 GB
of memory

O O

ACPI Useful for power manage-
ment, for example, with
KVM guests it is required
for graceful shutdown to
work

O O

APIC Enables the advanced pro-
grammable IRQ manage-
ment. Useful for SMP ma-
chines.

O O

LOCALTIME The guest clock will be
synchronized to the host’s
configured timezone when
booted. Useful for Win-
dows VMs

• O

HYPERV Add hyperv extensions
to the VM. The options
can be configured in
the driver configuration,
HYPERV_OPTIONS

• O

DEVICE_MODE Used to change the IO emu-
lator in Xen HVM.

O •

FEATURE = [
PAE = "yes",
ACPI = "yes",
APIC = "no",
DEVICE_MODE = "qemu-dm"

]

4.1.6 Disks Section

The disks of a VM are defined with the DISK vector attribute. You can define as many DISK attributes as you need.
There are three types of disks:

66 Chapter 4. References

OpenNebula 4.6 User Guide, Release 4.6

• Persistent disks, uses an Image registered in a Datastore mark as persistent.

• Clone disks, uses an Image registered in a Datastore. Changes to the images will be discarded. A clone disk can
be saved as other image.

• Volatile disks, created on-the-fly on the target hosts. Disks are disposed when the VM is shutdown and cannot
be saved_as

Persistent and Clone Disks

DISK Sub-Attribute Description Xen KVM VMware
IMAGE_ID ID of the Image to use Mandatory (no IM-

AGE)
Mandatory (no IM-
AGE)

Mandatory (no IM-
AGE)

IMAGE Name of the Image to
use

Mandatory (no IM-
AGE_ID)

Mandatory (no IM-
AGE_ID)

Mandatory (no IM-
AGE_ID)

IMAGE_UID To select the IMAGE
of a given user by her
ID

Optional Optional Optional

IMAGE_UNAME To select the IMAGE
of a given user by her
NAME

Optional Optional Optional

DEV_PREFIX Prefix for the emu-
lated device this im-
age will be mounted
at. For instance, hd,
sd, or vd for KVM
virtio. If omitted, the
dev_prefix attribute of
the Image will be used

Optional Optional Optional

TARGET Device to map image
disk. If set, it will
overwrite the default
device mapping.

Optional Optional Optional

DRIVER Specific image map-
ping driver

Optional e.g.:
tap:aio:,file:

Optional e.g.: raw,
qcow2

•

CACHE Selects the cache
mechanism for the
disk. Values are
default, none,
writethrough,
writeback,
directsync
and unsafe. More
info in the libvirt
documentation

• Optional •

READONLY Set how the image is
exposed by the hyper-
visor

Optional e.g.: yes,
no. This attribute
should only be used
for special storage
configurations

Optional e.g.: yes,
no. This attribute
should only be used
for special storage
configurations

Optional e.g.: yes,
no. This attribute
should only be used
for special storage
configurations

IO Set IO policy. Val-
ues are threads,
native

• Optional •

4.1. Virtual Machine Definition File 67

http://libvirt.org/formatdomain.html#elementsDevices
http://libvirt.org/formatdomain.html#elementsDevices

OpenNebula 4.6 User Guide, Release 4.6

Volatile DISKS

DISK Sub-Attribute Description XEN KVM VMWARE
TYPE Type of the

disk:swap, fs
Optional Optional Optional

SIZE size in MB Optional Optional Optional
FORMAT filesystem for fs im-

ages: ext2, ext3. . .
raw will not format
the image.

Mandatory (for fs) Mandatory (for fs) Mandatory (for fs)

DEV_PREFIX Prefix for the emu-
lated device this im-
age will be mounted
at. For instance, hd,
sd. If omitted, the de-
fault dev_prefix set in
oned.conf will be used

Optional Optional Optional

TARGET device to map disk Optional Optional Optional
DRIVER special disk map-

ping options. KVM:
raw,qcow2. Xen:
tap:aio:, file:

Optional Optional Optional

CACHE Selects the cache
mechanism for the
disk. Values are
default, none,
writethrough,
writeback,
directsync
and unsafe. More
info in the libvirt
documentation

• Optional •

READONLY Set how the image is
exposed by the hyper-
visor

Optional e.g.: yes,
no. This attribute
should only be used
for special storage
configurations

Optional e.g.: yes,
no. This attribute
should only be used
for special storage
configurations

Optional e.g.: yes,
no. This attribute
should only be used
for special storage
configurations

IO Set IO policy. Val-
ues are threads,
native

• Optional •

Disks Device Mapping

If the TARGET attribute is not set for a disk, OpenNebula will automatically assign it using the following precedence,
starting with dev_prefix + a:

• First OS type Image.

• Contextualization CDROM.

• CDROM type Images.

• The rest of DATABLOCK and OS Images, and Volatile disks.

68 Chapter 4. References

http://libvirt.org/formatdomain.html#elementsDevices
http://libvirt.org/formatdomain.html#elementsDevices

OpenNebula 4.6 User Guide, Release 4.6

Please visit the guide for managing images and the image template reference to learn more about the different image
types.

You can find a complete description of the contextualization features in the contextualization guide.

The default device prefix sd can be changed to hd or other prefix that suits your virtualization hypervisor requirements.
You can find more information in the daemon configuration guide.

An Example

This a sample section for disks. There are four disks using the image repository, and two volatile ones. Note that fs
and swap are generated on-the-fly:

First OS image, will be mapped to sda. Use image with ID 2
DISK = [IMAGE_ID = 2]

First DATABLOCK image, mapped to sdb.
Use the Image named Data, owned by the user named oneadmin.
DISK = [IMAGE = "Data",

IMAGE_UNAME = "oneadmin"]

Second DATABLOCK image, mapped to sdc
Use the Image named Results owned by user with ID 7.
DISK = [IMAGE = "Results",

IMAGE_UID = 7]

Third DATABLOCK image, mapped to sdd
Use the Image named Experiments owned by user instantiating the VM.
DISK = [IMAGE = "Experiments"]

Volatile filesystem disk, sde
DISK = [TYPE = fs,

SIZE = 4096,
FORMAT = ext3]

swap, sdf
DISK = [TYPE = swap,

SIZE = 1024]

Because this VM did not declare a CONTEXT or any disk using a CDROM Image, the first DATABLOCK found is
placed right after the OS Image, in sdb. For more information on image management and moving please check the
Storage guide.

4.1. Virtual Machine Definition File 69

OpenNebula 4.6 User Guide, Release 4.6

4.1.7 Network Section

NIC Sub-
Attribute

Description Mandatory

NET-
WORK_ID

ID of the network to attach this device, as defined by onevnet. Use if no
NETWORK

Mandatory
(No
NETWORK)

NET-
WORK

Name of the network to use (of those owned by user). Use if no NETWORK_ID Mandatory
(No NET-
WORK_ID)

NET-
WORK_UID

To select the NETWORK of a given user by her ID Optional

NET-
WORK_UNAME

To select the NETWORK of a given user by her NAME Optional

IP Request an specific IP from the NETWORK Optional
MAC* Request an specific HW address from the network interface Optional
BRIDGE Name of the bridge the network device is going to be attached to. Optional
TARGET name for the tun device created for the VM Option for

KVM and
VMWare

SCRIPT name of a shell script to be executed after creating the tun device for the VM Optional
MODEL hardware that will emulate this network interface. With Xen this is the type

attribute of the vif. In KVM you can choose virtio to select its specific
virtualization IO framework

Optional

WHITE_PORTS_TCP‘‘iptables_range‘‘: Permits access to the VM only through the specified ports
in the TCP protocol. Supersedes BLACK_PORTS_TCP if defined.

Optional

BLACK_PORTS_TCP‘‘iptables_range‘‘: Doesn’t permit access to the VM through the specified
ports in the TCP protocol. Superseded by WHITE_PORTS_TCP if defined.

Optional

WHITE_PORTS_UDP‘‘iptables_range‘‘: Permits access to the VM only through the specified ports
in the UDP protocol. Supersedes BLACK_PORTS_UDP if defined.

Optional

BLACK_PORTS_UDP‘‘iptables_range‘‘: Doesn’t permit access to the VM through the specified
ports in the UDP protocol. Superseded by WHITE_PORTS_UDP if defined.

Optional

ICMP drop: Blocks ICMP connections to the VM. By default it’s set to accept. Optional

Warning: The PORTS and ICMP attributes require the firewalling functionality to be configured. Please read the
firewall configuration guide.

Example, a VM with two NIC attached to two different networks:

NIC = [NETWORK_ID = 1]

NIC = [NETWORK = "Blue",
NETWORK_UID = 0]

For more information on setting up virtual networks please check the Managing Virtual Networks guide.

4.1.8 I/O Devices Section

The following I/O interfaces can be defined for a VM:

Note the hypervisor column states that the attribute is Optional, Mandatory, or - not supported for that hypervisor

70 Chapter 4. References

OpenNebula 4.6 User Guide, Release 4.6

Attribute Description XEN KVM VMWARE
INPUT Define input de-

vices, available
sub-attributes:

• TYPE: values
are mouse or
tablet

• BUS: values are
usb, ps2 or
xen

O (only usb tablet is
supported)

O •

GRAPHICS Wether the VM
should export its
graphical display
and how, available
sub-attributes:

• TYPE: values:
vnc, sdl,
spice

• LISTEN: IP to
listen on.

• PORT: port for
the VNC server

• PASSWD:
password for
the VNC server

• KEYMAP:
keyboard
configuration
locale to use
in the VNC
display

O O •

Example:

GRAPHICS = [
TYPE = "vnc",
LISTEN = "0.0.0.0",
PORT = "5"]

Warning: For KVM hypervisor the port number is a real one, not the VNC port. So for VNC port 0 you should
specify 5900, for port 1 is 5901 and so on.

Warning: If the user does not specify the port variable, OpenNebula will automatically assign
$VNC_BASE_PORT + $VMID, allowing to generate different ports for VMs so they do not collide. The
VNC_BASE_PORT is specified inside the oned.conf file.

4.1.9 Context Section

Context information is passed to the Virtual Machine via an ISO mounted as a partition. This information can be
defined in the VM template in the optional section called Context, with the following attributes:

4.1. Virtual Machine Definition File 71

OpenNebula 4.6 User Guide, Release 4.6

At-
tribute

Description Manda-
tory

VARI-
ABLE

Variables that store values related to this virtual machine or others. The name of the
variable is arbitrary (in the example, we use hostname).

Op-
tional

FILES
*

space-separated list of paths to include in context device. Op-
tional

FILES_DSspace-separated list of File images to include in context device. Op-
tional

TAR-
GET

device to attach the context ISO. Op-
tional

TO-
KEN

YES to create a token.txt file for OneGate monitorization Op-
tional

NET-
WORK

YES to fill automatically the networking parameters for each NIC, used by the
Contextualization packages

Op-
tional

* only for users in oneadmin group

The values referred to by VARIABLE can be defined :

Hardcoded values:

HOSTNAME = "MAINHOST"

Using template variables

$<template_variable>: any single value variable of the VM template, like for example:

IP_GEN = "10.0.0.$VMID"

$<template_variable>[<attribute>]: Any single value contained in a multiple value variable in the VM
template, like for example:

IP_PRIVATE = $NIC[IP]

$<template_variable>[<attribute>, <attribute2>=<value2>]: Any single value contained in
the variable of the VM template, setting one attribute to discern between multiple variables called the same way, like
for example:

IP_PUBLIC = "$NIC[IP, NETWORK=\"Public\"]"

Using Virtual Network template variables

$NETWORK[<vnet_attribute>, <NETWORK_ID|NETWORK>=<vnet_id|vnet_name>]: Any single
value variable in the Virtual Network template, like for example:

dns = "$NETWORK[DNS, NETWORK_ID=3]"

Note: The network MUST be in used by any of the NICs defined in the template. The vnet_attribute can be
TEMPLATE to include the whole vnet template in XML (base64 encoded).

Using Image template variables

$IMAGE[<image_attribute>, <IMAGE_ID|IMAGE>=<img_id|img_name>]: Any single value vari-
able in the Image template, like for example:

root = "$IMAGE[ROOT_PASS, IMAGE_ID=0]"

Note: The image MUST be in used by any of the DISKs defined in the template. The image_attribute can be
TEMPLATE to include the whole image template in XML (base64 encoded).

72 Chapter 4. References

OpenNebula 4.6 User Guide, Release 4.6

Using User template variables

$USER[<user_attribute>]: Any single value variable in the user (owner of the VM) template, like for example:

ssh_key = "$USER[SSH_KEY]"

Note: The user_attribute can be TEMPLATE to include the whole user template in XML (base64 encoded).

Pre-defined variables, apart from those defined in the template you can use:

• $UID, the uid of the VM owner

• $UNAME, the name of the VM owner

• $GID, the id of the VM owner’s group

• $GNAME, the name of the VM owner’s group

• $TEMPLATE, the whole template in XML format and encoded in base64

FILES_DS, each file must be registered in a FILE_DS datastore and has to be of type CONTEXT. Use the following
to select files from Files Datastores:

• $FILE[IMAGE=<image name>], to select own files

• $FILE[IMAGE=<image name>, <IMAGE_UNAME|IMAGE_UID>=<owner name|owner id>], to
select images owned by other users, by user name or uid.

• $FILE[IMAGE_ID=<image id>], global file selection

Example:

CONTEXT = [
HOSTNAME = "MAINHOST",
IP_PRIVATE = "$NIC[IP]",
DNS = "$NETWORK[DNS, NAME=\"Public\"]",
IP_GEN = "10.0.0.$VMID",
FILES = "/service/init.sh /service/certificates /service/service.conf",
FILES_DS = "$FILE[IMAGE_ID=34] $FILE[IMAGE=\"kernel\"]",
TARGET = "sdc"

]

4.1.10 Placement Section

The following attributes placement constraints and preferences for the VM:

Attribute Description
SCHED_REQUIREMENTSBoolean expression that rules out provisioning hosts from list of machines suitable to run

this VM.
SCHED_RANK This field sets which attribute will be used to sort the suitable hosts for this VM.

Basically, it defines which hosts are more suitable than others.
SCHED_DS_REQUIREMENTSBoolean expression that rules out entries from the pool of datastores suitable to run this

VM.
SCHED_DS_RANK States which attribute will be used to sort the suitable datastores for this VM. Basically, it

defines which datastores are more suitable than others.

Example:

SCHED_REQUIREMENTS = "CPUSPEED > 1000"
SCHED_RANK = "FREE_CPU"

4.1. Virtual Machine Definition File 73

OpenNebula 4.6 User Guide, Release 4.6

SCHED_DS_REQUIREMENTS = "NAME=GoldenCephDS"
SCHED_DS_RANK = FREE_MB

Requirement Expression Syntax

The syntax of the requirement expressions is defined as:

stmt::= expr’;’
expr::= VARIABLE ’=’ NUMBER

| VARIABLE ’!=’ NUMBER
| VARIABLE ’>’ NUMBER
| VARIABLE ’<’ NUMBER
| VARIABLE ’=’ STRING
| VARIABLE ’!=’ STRING
| expr ’&’ expr
| expr ’|’ expr
| ’!’ expr
| ’(’ expr ’)’

Each expression is evaluated to 1 (TRUE) or 0 (FALSE). Only those hosts for which the requirement expression is
evaluated to TRUE will be considered to run the VM.

Logical operators work as expected (less ‘<’, greater ‘>’, ‘&’ AND, ‘|’ OR, ‘!’ NOT), ‘=’ means equals with numbers
(floats and integers). When you use ‘=’ operator with strings, it performs a shell wildcard pattern matching.

Any variable included in the Host template or its Cluster template can be used in the requirements. You may also use
an XPath expression to refer to the attribute.

There is a special variable, CURRENT_VMS, that can be used to deploy VMs in a Host where other VMs are (not)
running. It can be used only with the operators ‘=’ and ‘!=’

Warning: Check the Monitoring Subsystem guide to find out how to extend the information model and add any
information probe to the Hosts.

Warning: There are some predefined variables that can be used: NAME, MAX_CPU, MAX_MEM, FREE_MEM,
FREE_CPU, USED_MEM, USED_CPU, HYPERVISOR

Examples:

Only aquila hosts (aquila0, aquila1...), note the quotes
SCHED_REQUIREMENTS = "NAME = \"aquila*\""

Only those resources with more than 60% of free CPU
SCHED_REQUIREMENTS = "FREE_CPU > 60"

Deploy only in the Host where VM 5 is running
SCHED_REQUIREMENTS = "CURRENT_VMS = 5"

Deploy in any Host, except the ones where VM 5 or VM 7 are running
SCHED_REQUIREMENTS = "(CURRENT_VMS != 5) & (CURRENT_VMS != 7)"

Warning: If using OpenNebula’s default match-making scheduler in a hypervisor heterogeneous environment,
it is a good idea to add an extra line like the following to the VM template to ensure its placement in a VMWare
hypervisor enabled machine.

74 Chapter 4. References

OpenNebula 4.6 User Guide, Release 4.6

SCHED_REQUIREMENTS = "HYPERVISOR=\"vmware\""

Warning: Template variables can be used in the SCHED_REQUIREMENTS section.

• $<template_variable>: any single value variable of the VM template.

• $<template_variable>[<attribute>]: Any single value contained in a multiple value variable in
the VM template.

• $<template_variable>[<attribute>, <attribute2>=<value2>]: Any single value con-
tained in a multiple value variable in the VM template, setting one atribute to discern between multiple variables
called the same way.

For example, if you have a custom probe that generates a MACS attribute for the hosts, you can do short of a MAC
pinning, so only VMs with a given MAC runs in a given host.

SCHED_REQUIREMENTS = "MAC=\"$NIC[MAC]\""

Rank Expression Syntax

The syntax of the rank expressions is defined as:

stmt::= expr’;’
expr::= VARIABLE

| NUMBER
| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| ’-’ expr
| ’(’ expr ’)’

Rank expressions are evaluated using each host information. ‘+’, ‘-‘, ‘*’, ‘/’ and ‘-‘ are arithmetic operators. The rank
expression is calculated using floating point arithmetics, and then round to an integer value.

Warning: The rank expression is evaluated for each host, those hosts with a higher rank are used first to start
the VM. The rank policy must be implemented by the scheduler. Check the configuration guide to configure the
scheduler.

Warning: Similar to the requirements attribute, any number (integer or float) attribute defined for the host can be
used in the rank attribute

Examples:

First those resources with a higher Free CPU
SCHED_RANK = "FREE_CPU"

Consider also the CPU temperature
SCHED_RANK = "FREE_CPU * 100 - TEMPERATURE"

4.1.11 RAW Section

This optional section of the VM template is used whenever the need to pass special attributes to the underlying
hypervisor arises. Anything placed in the data attribute gets passed straight to the hypervisor, unmodified.

4.1. Virtual Machine Definition File 75

OpenNebula 4.6 User Guide, Release 4.6

RAW Sub-Attribute Description XEN KVM VMWARE
TYPE Possible values are:

kvm, xen, vmware
O O O

DATA Raw data to be passed
directly to the hyper-
visor

O O O

DATA_VMX Raw data to be added
directly to the .vmx
file

• • O

Example:

Add a custom builder and bootloader to a Xen VM:

RAW = [
TYPE = "xen",
DATA = "builder=\"linux\"

bootloader=\"/usr/lib/xen/boot/domUloader.py\"
bootargs=\"--entry=xvda2:/boot/vmlinuz-xenpae,/boot/vmlinuz-xenpae\""]

Add a guest type and a specific scsi controller to a vmware VM:

RAW = [
TYPE = "vmware",
DATA = "<devices><controller type=’scsi’ index=’0’ model=’lsilogic’/></devices>",
DATA_VMX = "pciBridge0.present = \"TRUE\"\nguestOS=\"windows7srv-64\""

]

4.1.12 Restricted Attributes

All the default restricted attributes to users in the oneadmin group are summarized in the following list:

• CONTEXT/FILES

• DISK/SOURCE

• NIC/MAC

• NIC/VLAN_ID

• SCHED_RANK

These attributes can be configured in oned.conf.

4.2 Image Definition Template

This page describes how to define a new image template. An image template follows the same syntax as the VM
template.

If you want to learn more about the image repository, you can do so here.

Warning: There are some template attributes that can compromise the security of the system or the security of
other VMs, and can be used only by users in the oneadmin group. These attributes can be configured in oned.conf,
the default ones are labeled with * in the following tables. See the complete list in the Restricted Attributes section.

76 Chapter 4. References

OpenNebula 4.6 User Guide, Release 4.6

4.2.1 Template Attributes

The following attributes can be defined in the template.

At-
tribute

M / O Value Description

NAME Manda-
tory

Any string Name that the Image will get. Every image must have a
unique name.

DE-
SCRIP-
TION

Optional Any string Human readable description of the image for other users.

TYPE Optional OS, CDROM,
DATABLOCK,
KERNEL, RAMDISK,
CONTEXT

Type of the image, explained in detail in the following
section. If omitted, the default value is the one defined in
oned.conf (install default is OS).

PER-
SIS-
TENT

Optional YES, NO Persistence of the image. If omitted, the default value is NO.

PER-
SIS-
TENT_TYPE

Optional IMMUTABLE An special persistent image, that will not be modified. This
attribute should only be used for special storage
configurations.

DEV_PREFIXOptional Any string Prefix for the emulated device this image will be mounted at.
For instance, hd, sd, or vd for KVM virtio. If omitted, the
default value is the one defined in oned.conf (installation
default is hd).

TAR-
GET

Optional Any string Target for the emulated device this image will be mounted at.
For instance, hdb, sdc. If omitted, it will be assigned
automatically.

DRIVER Optional KVM: raw, qcow2
Xen:tap:aio:,
file:

Specific image mapping driver. VMware is unsupported

PATH Manda-
tory (if no
SOURCE)

Any string Path to the original file that will be copied to the image
repository. If not specified for a DATABLOCK type image, an
empty image will be created. Note that gzipped files are
supported and OpenNebula will automatically decompress
them. Bzip2 compressed files is also supported, but it’s
strongly discouraged since OpenNebula will not calculate it’s
size properly.

SOURCE*Manda-
tory (if no
PATH)

Any string Source to be used in the DISK attribute. Useful for not
file-based images.

DISK_TYPEOptional BLOCK, CDROM or
FILE (default).

This is the type of the supporting media for the image: a block
device (BLOCK) an ISO-9660 file or readonly block device
(CDROM) or a plain file (FILE).

READ-
ONLY

Optional YES, NO. This attribute should only be used for special storage
configurations. It sets how the image is going to be exposed to
the hypervisor. Images of type CDROM and those with
PERSISTENT_TYPE set to IMMUTABLE will have
READONLY set to YES. Otherwise, by default it is set to NO.

CLONE_FSTYPEOptional thin,zeroedthick,
eagerzeroedthick
,thick,thin

Only for VMware images ion vmfs datastores. Sets the
format of the target image when cloning within the datstore.
More information on types.

MD5 Optional An md5 hash MD5 hash to check for image integrity
SHA1 Optional An sha1 hash SHA1 hash to check for image integrity

4.2. Image Definition Template 77

https://communities.vmware.com/message/716009

OpenNebula 4.6 User Guide, Release 4.6

Warning: Be careful when PATH points to a compressed bz2 image, since although it will work, OpenNebula
will not calculate its size correctly.

Mandatory attributes for DATABLOCK images with no PATH set:

At-
tribute

Value Description

SIZE An
inte-
ger

Size in MB.

FSTYPEString Type of file system to be built. Plain. When the disk image is used directly by the hypervisor we
can format the image, and so it is ready to be used by the guest OS. Values: ext2, ext3,
ext4, ntfs, reiserfs, jfs, swap. Any other fs supported by mkfs will work if no special
option is needed. Formatted. The disk image is stored in a hypervisor specific format VMDK
or Qcow2. Then we cannot really make a filesystem on the image, just create the device and let
the guest OS format the disk. Use raw to not to format the new image. Values: raw, qcow2,
vmdk_*.

4.2.2 Template Examples

Example of an OS image:

NAME = "Ubuntu Web Development"
PATH = /home/one_user/images/ubuntu_desktop.img
DESCRIPTION = "Ubuntu 10.04 desktop for Web Development students.
Contains the pdf lessons and exercises as well as all the necessary
programming tools and testing frameworks."

Example of a CDROM image:

NAME = "MATLAB install CD"
TYPE = CDROM
PATH = /home/one_user/images/matlab.iso
DESCRIPTION = "Contains the MATLAB installation files. Mount it to install MATLAB on new OS images."

Example of a DATABLOCK image:

NAME = "Experiment results"
TYPE = DATABLOCK
No PATH set, this image will start as a new empty disk
SIZE = 3.08
FSTYPE = ext3
DESCRIPTION = "Storage for my Thesis experiments."

4.2.3 Restricted Attributes

All the default restricted attributes to users in the oneadmin group are summarized in the following list:

• SOURCE

78 Chapter 4. References

OpenNebula 4.6 User Guide, Release 4.6

4.3 Virtual Network Definition File

This page describes how to define a new Virtual Network template. A Virtual Network template follows the same
syntax as the VM template.

If you want to learn more about the Virtual Network management, you can do so here.

4.3.1 Common Attributes

There are two types of Virtual Networks, ranged and fixed. Their only difference is how the leases are defined in the
template.

These are the common attributes for both types of VNets:

Attribute Value Description Mandatory
NAME String Name of the Virtual Network YES
BRIDGE String Name of the physical bridge in the physical host where the VM

should connect its network interface
YES if
PHYDEV is
not set

TYPE RANGED/FIXEDType of this VNet YES
VLAN YES/NO Whether or not to isolate this virtual network using the Virtual

Network Manager drivers. If omitted, the default value is NO.
NO

VLAN_ID Integer Optional VLAN id for the 802.1Q and Open vSwitch networking
drivers.

NO

PHYDEV String Name of the physical network device that will be attached to the
bridge.

YES for
802.1Q driver

SITE_PREFIXString IPv6 unicast local addresses (ULAs). Must be a valid IPv6 Optional
GLOBAL_PREFIXString IPv6 global unicast addresses. Must be a valid IPv6 Optional

Please note that any arbitrary value can be set in the Virtual Network template, and then used in the contextualization
section of the VM. For instance, NETWORK_GATEWAY="x.x.x.x" might be used to define the Virtual Network,
and then used in the context section of the VM to configure its network to connect through the GATEWAY.

If you need OpenNebula to generate IPv6 addresses, that can be later used in context or for Virtual Router appliances,
you can use the GLOBAL_PREFIX and SITE_PREFIX attributes

Attributes Used for Contextualization

Attribute Description
NETWORK_ADDRESS Base network address
NETWORK_MASK Network mask
GATEWAY Router for this network, do not set when the network is not routable
DNS Specific DNS for this network
GATEWAY6 IPv6 router for this network
CONTEXT_FORCE_IPV4 When a vnet is IPv6 the IPv4 is not configured unless this attribute is set

4.3.2 Leases

A lease is a definition of an IP-MAC pair. From an IP address, OpenNebula generates an associated MAC using the
following rule: MAC = MAC_PREFFIX:IP. All Virtual Networks share a default value for the MAC_PREFIX, set
in the oned.conf file.

So, for example, from IP 10.0.0.1 and MAC_PREFFIX 02:00, we get 02:00:0a:00:00:01.

4.3. Virtual Network Definition File 79

OpenNebula 4.6 User Guide, Release 4.6

The available leases for new VNets are defined differently for each type.

Fixed Virtual Networks

Fixed VNets need a series of LEASES vector attributes, defined with the following sub-attributes:

Sub-Attribute Value Description Mandatory
IP IP address IP for this lease YES
MAC MAC address MAC associated to this IP NO

Warning: The optional MAC attribute will overwrite the default MAC_PREFIX:IP rule. Be aware that this will
break the default contextualization mechanism.

Ranged Virtual Networks

Instead of a list of LEASES, ranged Virtual Networks contain a range of IPs that can be defined in a flexible way using
these attributes:

Attribute Value Description
NET-
WORK_ADDRESS

IP address,
optionally in
CIDR notation

Base network address to generate IP addresses.

NET-
WORK_SIZE

A, B, C, or
Number

Number of VMs that can be connected using this network. It can be defined
either using a number or a network class (A, B or C). The default value for
the network size can be found in oned.conf.

NET-
WORK_MASK

Mask in
dot-decimal
notation

Network mask for this network.

IP_START IP address First IP of the range.
IP_END IP address Last IP of the range.
MAC_STARTMAC address First MAC of the range.

The following examples define the same network range, from 10.10.10.1 to 10.10.10.254:

NETWORK_ADDRESS = 10.10.10.0
NETWORK_SIZE = C

NETWORK_ADDRESS = 10.10.10.0
NETWORK_SIZE = 254

NETWORK_ADDRESS = 10.10.10.0/24

NETWORK_ADDRESS = 10.10.10.0
NETWORK_MASK = 255.255.255.0

You can change the first and/or last IP of the range:

NETWORK_ADDRESS = 10.10.10.0/24
IP_START = 10.10.10.17

Or define the range manually:

IP_START = 10.10.10.17
IP_END = 10.10.10.41

80 Chapter 4. References

OpenNebula 4.6 User Guide, Release 4.6

Finally, you can define the network by just specifying the MAC address set (specially in IPv6). The following is
equivalent to the previous examples but with MACs:

MAC_START = 02:00:0A:0A:0A:11
NETWORK_SIZE = 254

Warning: With either of the above procedures, no matter if you are defining the set using IPv4 networks, Open-
Nebula will generate IPv6 addresses if the GLOBAL_PREFIX and/or SITE_PREFIX is added to the network
template. Note that the link local IPv6 address will be always generated.

4.3.3 Examples

Sample fixed VNet:

NAME = "Blue LAN"
TYPE = FIXED

We have to bind this network to ’’virbr1’’ for Internet Access
BRIDGE = vbr1

LEASES = [IP=130.10.0.1]
LEASES = [IP=130.10.0.2, MAC=50:20:20:20:20:21]
LEASES = [IP=130.10.0.3]
LEASES = [IP=130.10.0.4]

Custom Attributes to be used in Context
GATEWAY = 130.10.0.1
DNS = 130.10.0.1

LOAD_BALANCER = 130.10.0.4

Sample ranged VNet:

NAME = "Red LAN"
TYPE = RANGED

Now we’ll use the host private network (physical)
BRIDGE = vbr0

NETWORK_ADDRESS = 192.168.0.0/24
IP_START = 192.168.0.3

Custom Attributes to be used in Context
GATEWAY = 192.168.0.1
DNS = 192.168.0.1

LOAD_BALANCER = 192.168.0.2

4.4 Command Line Interface

OpenNebula provides a set commands to interact with the system:

4.4. Command Line Interface 81

OpenNebula 4.6 User Guide, Release 4.6

4.4.1 CLI

• oneacct: gets accounting data from OpenNebula

• oneacl: manages OpenNebula ACLs

• onecluster: manages OpenNebula clusters

• onedatastore: manages OpenNebula datastores

• onedb: OpenNebula database migration tool

• onegroup: manages OpenNebula groups

• onehost: manages OpenNebula hosts

• oneimage: manages OpenNebula images

• onetemplate: manages OpenNebula templates

• oneuser: manages OpenNebula users

• onevdc: manages OpenNebula Virtual DataCenters

• onevm: manages OpenNebula virtual machines

• onevnet: manages OpenNebula networks

• onezone: manages OpenNebula zones

The output of these commands can be customized by modifying the configuration files that can be found in
/etc/one/cli/. They also can be customized on a per-user basis, in this case the configuration files should
be placed in $HOME/.one/cli.

4.4.2 OCCI Commands

• occi-compute: manages compute objects

• occi-network: manages network objects

• occi-storage: manages storage objects

• occi-instance-type: Retrieve instance types

4.4.3 ECONE Commands

• econe-upload: Uploads an image to OpenNebula

• econe-describe-images: Lists all registered images belonging to one particular user.

• econe-run-instances: Runs an instance of a particular image (that needs to be referenced).

• econe-describe-instances: Outputs a list of launched images belonging to one particular user.

• econe-terminate-instances: Shutdowns a set ofvirtual machines (or cancel, depending on its state).

• econe-reboot-instances: Reboots a set ofvirtual machines.

• econe-start-instances: Starts a set ofvirtual machines.

• econe-stop-instances: Stops a set ofvirtual machines.

• econe-create-volume: Creates a new DATABLOCK in OpenNebula

• econe-delete-volume: Deletes an existing DATABLOCK.

82 Chapter 4. References

OpenNebula 4.6 User Guide, Release 4.6

• econe-describe-volumes: Describe all available DATABLOCKs for this user

• econe-attach-volume: Attaches a DATABLOCK to an instance

• econe-detach-volume: Detaches a DATABLOCK from an instance

• econe-allocate-address: Allocates a new elastic IP address for the user

• econe-release-address: Releases a publicIP of the user

• econe-describe-addresses: Lists elastic IP addresses

• econe-associate-address: Associates a publicIP of the user with a given instance

• econe-disassociate-address: Disasociate a publicIP of the user currently associated with an instance

• econe-create-keypair: Creates the named keypair

• econe-delete-keypair: Deletes the named keypair, removes the associated keys

• econe-describe-keypairs: List and describe the key pairs available to the user

• econe-register: Registers an image

4.4.4 oneFlow Commands

• oneflow: oneFlow Service management

• oneflow-template: oneFlow Service Template management

4.4. Command Line Interface 83

	Virtual Resource Management
	Introduction to Private Cloud Computing
	Managing Virtual Networks
	Managing Images
	Creating Virtual Machines
	Managing Virtual Machines

	Virtual Machine Setup
	Contextualization Overview
	Adding Content to Your Cloud
	Basic Contextualization
	Advanced Contextualization
	Windows Contextualization
	Cloud-init

	OpenNebula Marketplace
	Interacting with the OpenNebula Marketplace
	Howto Create Apps for the Marketplace

	References
	Virtual Machine Definition File
	Image Definition Template
	Virtual Network Definition File
	Command Line Interface

