
OpenNebula 4.10 Design and
Installation Guide

Release 4.10.2

OpenNebula Project

January 16, 2015

CONTENTS

1 Building your Cloud 1
1.1 An Overview of OpenNebula . 1
1.2 Understanding OpenNebula . 6
1.3 Planning the Installation . 12
1.4 Installing the Software . 17
1.5 Glossary . 25

2 Quick Starts 27
2.1 Quickstart: OpenNebula on CentOS 6 and KVM . 27
2.2 Quickstart: OpenNebula on CentOS 7 and KVM . 33
2.3 Quickstart: OpenNebula on CentOS 6 and Xen . 39
2.4 Quickstart: OpenNebula on CentOS 6 and ESX 5.1 . 46
2.5 Quickstart: OpenNebula on Ubuntu 14.04 and KVM . 59
2.6 Quickstart: Create Your First VDC . 65

i

ii

CHAPTER

ONE

BUILDING YOUR CLOUD

1.1 An Overview of OpenNebula

OpenNebula offers a simple but feature-rich and flexible solution to build and manage enterprise clouds and virtu-
alized data centers. OpenNebula is designed to be simple. Simple to install, update and operate by the admins, and
simple to use by end users. Being focused on simplicity, we integrate with existing technologies whenever possible.
You’ll see that OpenNebula works with MySQL, Ceph, LVM, GlusterFS, Open vSwitch, Ceph, LDAP... This allows
us to deliver a light, flexible and robust cloud manager.

This introductory guide gives an overview of OpenNebula and summarizes its main benefits for the different stake-
holders involved in a cloud computing infrastructure.

1.1.1 What Are the Key Features Provided by OpenNebula?

You can refer to our a summarized table of Key Features or to the Detailed Features and Functionality Guide included
in the documentation of each version.

1.1.2 What Are the Interfaces Provided by OpenNebula?

Because no two clouds are the same, OpenNebula provides many different interfaces that can be used to interact
with the functionality offered to manage physical and virtual resources. There are four main different perspectives to
interact with OpenNebula:

• Cloud interfaces for Cloud Consumers, like EC2 Query and EBS interfaces, and a simple Sunstone cloud user
view that can be used as a self-service portal.

• Administration interfaces for Cloud Advanced Users and Operators, like a Unix-like command line interface
and the powerful Sunstone GUI.

• Extensible low-level APIs for Cloud Integrators in Ruby, JAVA and XMLRPC API

• A Marketplace for Appliance Builders with a catalog of virtual appliances ready to run in OpenNebula envi-
ronments.

1

http://opennebula.org/about/key-features/

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.1.3 What Does OpenNebula Offer to Cloud Consumers?

OpenNebula provides a powerful, scalable and secure multi-tenant cloud platform for fast delivery and elasticity of
virtual resources. Multi-tier applications can be deployed and consumed as pre-configured virtual appliances from
catalogs.

• Image Catalogs: OpenNebula allows to store disk images in catalogs (termed datastores), that can be then used
to define VMs or shared with other users. The images can be OS installations, persistent data sets or empty data
blocks that are created within the datastore.

• Network Catalogs: Virtual networks can be also be organised in network catalogs, and provide means to
interconnect virtual machines. This kind of resources can be defined as IPv4, IPv6, or mixed networks, and
can be used to achieve full isolation between virtual networks.

• VM Template Catalog: The template catalog system allows to register virtual machine definitions in the sys-
tem, to be instantiated later as virtual machine instances.

• Virtual Resource Control and Monitoring: Once a template is instantiated to a virtual machine, there are
a number of operations that can be performed to control lifecycle of the virtual machine instances, such as
migration (live and cold), stop, resume, cancel, poweroff, etc.

• Multi-tier Cloud Application Control and Monitoring: OpenNebula allows to define, execute and manage
multi-tiered elastic applications, or services composed of interconnected Virtual Machines with deployment
dependencies between them and auto-scaling rules.

2 Chapter 1. Building your Cloud

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.1.4 What Does OpenNebula Offer to Cloud Operators?

OpenNebula is composed of the following subsystems:

• Users and Groups: OpenNebula features advanced multi-tenancy with powerful users and groups management,
fine-grained ACLs for resource allocation, and resource quota management to track and limit computing, storage
and networking utilization.

• Virtualization: Various hypervisors are supported in the virtualization manager, with the ability to control the
complete lifecycle of Virtual Machines and multiple hypervisors in the same cloud infrastructure.

• Hosts: The host manager provides complete functionality for the management of the physical hosts in the cloud.

• Monitoring: Virtual resources as well as hosts are periodically monitored for key performance indicators. The
information can then used by a powerful and flexible scheduler for the definition of workload and resource-aware
allocation policies. You can also gain insight application status and performance.

• Accounting: A Configurable accounting system to visualize and report resource usage data, to allow their
integration with chargeback and billing platforms, or to guarantee fair share of resources among users.

• Networking: An easily adaptable and customizable network subsystem is present in OpenNebula in order to
better integrate with the specific network requirements of existing data centers and to allow full isolation between
virtual machines that composes a virtualised service.

• Storage: The support for multiple datastores in the storage subsystem provides extreme flexibility in planning
the storage backend and important performance benefits.

• Security: This feature is spread across several subsystems: authentication and authorization mechanisms al-
lowing for various possible mechanisms to identify a authorize users, a powerful Access Control List mechanism
allowing different role management with fine grain permission granting over any resource managed by Open-
Nebula, support for isolation at different levels...

• High Availability: Support for HA architectures and configurable behavior in the event of host or VM failure to
provide easy to use and cost-effective failover solutions.

• Clusters: Clusters are pools of hosts that share datastores and virtual networks. Clusters are used for load
balancing, high availability, and high performance computing.

1.1. An Overview of OpenNebula 3

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

• Multiple Zones: The Data Center Federation functionality allows for the centralized management of multiple
instances of OpenNebula for scalability, isolation and multiple-site support.

• VDCs. An OpenNebula instance (or Zone) can be further compartmentalized in Virtual Data Centers (VDCs),
which offer a fully-isolated virtual infrastructure environments where a group of users, under the control of the
VDC administrator, can create and manage compute, storage and networking capacity.

• Cloud Bursting: OpenNebula gives support to build a hybrid cloud, an extension of a private cloud to combine
local resources with resources from remote cloud providers. A whole public cloud provider can be encapsulated
as a local resource to be able to use extra computational capacity to satisfy peak demands.

• App Market: OpenNebula allows the deployment of a private centralized catalog of cloud applications to share
and distribute virtual appliances across OpenNebula instances

1.1.5 What Does OpenNebula Offer to Cloud Builders?

OpenNebula offers broad support for commodity and enterprise-grade hypervisor, monitoring, storage, networking
and user management services:

• User Management: OpenNebula can validate users using its own internal user database based on passwords,
or external mechanisms, like ssh, x509, ldap or Active Directory

• Virtualization: Several hypervisor technologies are fully supported, like Xen, KVM and VMware.

• Monitoring: OpenNebula provides its own customizable and highly scalable monitoring system and also can
be integrated with external data center monitoring tools.

• Networking: Virtual networks can be backed up by 802.1Q VLANs, ebtables, Open vSwitch or VMware net-
working.

• Storage: Multiple backends are supported like the regular (shared or not) filesystem datastore supporting pop-
ular distributed file systems like NFS, Lustre, GlusterFS, ZFS, GPFS, MooseFS...; the VMware datastore (both
regular filesystem or VMFS based) specialized for the VMware hypervisor that handle the vmdk format; the
LVM datastore to store disk images in a block device form; and Ceph for distributed block device.

• Databases: Aside from the original sqlite backend, mysql is also supported.

4 Chapter 1. Building your Cloud

https://github.com/OpenNebula/addon-appmarket

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

• Cloud Bursting: Out of the box connectors are shipped to support Amazon EC2, IBM SoftLayer and Microsoft
Azure cloudbursting.

1.1.6 What Does OpenNebula Offer to Cloud Integrators?

OpenNebula is fully platform independent and offers many tools for cloud integrators:

• Modular and extensible architecture with customizable plug-ins for integration with any third-party data
center service

• API for integration with higher level tools such as billing, self-service portals... that offers all the rich func-
tionality of the OpenNebula core, with bindings for ruby and java.

• Sunstone Server custom routes to extend the sunstone server.

• OneFlow API to create, control and monitor multi-tier applications or services composed of interconnected
Virtual Machines.

• Hook Manager to trigger administration scripts upon VM state change.

1.1. An Overview of OpenNebula 5

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.2 Understanding OpenNebula

This guide is meant for cloud architects, builders and administrators, to help them understand the OpenNebula model
for managing and provisiong virtual resources. This model is a result of our collaboration with our user community
during the last years. Although OpenNebula has been designed and developed to be easy to adapt to individual
enterprise use cases and processes, and to perform fine-tuning of multiple aspects, OpenNebula brings a pre-defined
model for cloud provisioning and consumption that offers an integrated and comprehensive framework for resource
allocation and isolation in federated data centers and hybrid cloud deployments.

This guide also illustrates the three main types of cloud infrastructures that are implemented with OpenNebula:

• Data center infrastructure management

• Simple cloud provisioning model

• Advanced cloud provisioning model

1.2.1 The Infrastructure Perspective

In a small installation with a few hosts, you can use OpenNebula without giving much though to infrastructure fed-
eration and partitioning. But for medium and large deployments you will probably want to provide some level of
isolation and structure. Common large IT shops have multiple Data Centers (DCs), each one of them consisting of
several physical Clusters of infrastructure resources (hosts, networks and storage). These Clusters could present dif-
ferent architectures and software/hardware execution environments to fulfill the needs of different workload profiles.
Moreover, many organizations have access to external public clouds to build hybrid cloud scenarios where the private
capacity of the Data Centers is supplemented with resources from external clouds, like Amazon AWS, to address
peaks of demand. OpenNebula provides a single comprehensive framework to dynamically allocate all these available
resources to the multiple groups of users.

6 Chapter 1. Building your Cloud

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

For example, you could have two Data Centers in different geographic locations, Europe and USA West Coast, and an
agreement for cloudbursting with a public cloud provider, such as Amazon, SoftLayer and/or Azure. Each Data Center
runs its own full OpenNebula deployment. Multiple OpenNebula installations can be configured as a federation, and
in this case they will share the same user accounts, groups, and permissions across Data Centers.

1.2.2 The Organizational Perspective

Users are organized into Groups (also called Projects, Domains, Tenants...). A Group is an authorization boundary
that can be seen as a business unit if you are considering it as private cloud or as a complete new company if it is
public cloud.

A Group is simply a boundary, you need to populate resources into the Group which can then be consumed by the
users of that Group. A VDC (Virtual Data Center) is a Group plus Resource Providers assigned. A Resource Provider
is a Cluster of infrastructure resources (physical hosts, networks, storage and external clouds) from one of the Data
Centers.

Different authorization scenarios can be enabled with the powerful and configurable ACL system provided, from the
definition of VDC Admins to the privileges of the users that can deploy virtual machines. Each VDC can execute
different types of workload profiles with different performance and security requirements.

The following are common enterprise use cases in large cloud computing deployments:

• On-premise Private Clouds Serving Multiple Projects, Departments, Units or Organizations. On-premise
private clouds in large organizations require powerful and flexible mechanisms to manage the access privileges
to the virtual and physical infrastructure and to dynamically allocate the available resources. In these scenarios,
the Cloud Administrator would define a VDC for each Department, dynamically allocating resources according
to their needs, and delegating the internal administration of the VDC to the Department IT Administrator.

• Cloud Providers Offering Virtual Private Cloud Computing. Cloud providers providing customers with a fully-
configurable and isolated environment where they have full control and capacity to administer its users and
resources. This combines a public cloud with the control usually seen in a personal private cloud system.

For example, you can think Web Development, Human Resources, and Big Data Analysis as business units represented
by VDCs in a private OpenNebula cloud.

1.2. Understanding OpenNebula 7

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

• BLUE: Allocation of (ClusterA-DC_West_Coast + Cloudbursting) to Web Development

• RED: Allocation of (ClusterB-DC_West_Coast + ClusterA-DC_Europe + Cloudbursting) to Human Resources

• GREEN: Allocation of (ClusterC-DC_West_Coast + ClusterB-DC_Europe) to Big Data Analysis

1.2.3 A Cloud Provisioning Model Based on vDCs

A VDC is a fully-isolated virtual infrastructure environment where a Group of users, optionally under the control
of the VDC admin, can create and manage compute and storage capacity. The users in the VDC, including the
VDC administrator, would only see the virtual resources and not the underlying physical infrastructure. The physical
resources allocated by the cloud administrator to the VDC can be completely dedicated to the VDC, providing isolation
at the physical level too.

The privileges of the VDC users and the administrator regarding the operations over the virtual resources created by
other users can be configured. For example, in the Advanced Cloud Provisioning Case, the users can instantiate virtual
machine templates to create their machines, while the administrators of the VDC have full control over other users’
resources and can also create new users in the VDC.

8 Chapter 1. Building your Cloud

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Users can then access their VDC through any of the existing OpenNebula interfaces, such as the CLI, Sunstone Cloud
View, OCA, or the AWS APIs. VDC administrators can manage their VDCs through the CLI or the VDC Admin View
in Sunstone. Cloud Administrators can manage the VDCs through the CLI or Sunstone.

The Cloud provisioning model based on VDCs enables an integrated, comprehensive framework to dynamically pro-
vision the infrastructure resources in large multi-datacenter environments to different customers, business units or
groups. This brings several benefits:

• Partitioning of cloud physical resources between Groups of users

• Complete isolation of users, organizations or workloads

• Allocation of Clusters with different levels of security, performance or high availability

• Containers for the execution of software-defined data centers

• Way of hiding physical resources from Group members

• Simple federation, scalability and cloudbursting of private cloud infrastructures beyond a single cloud instance
and data center

1.2.4 Cloud Usage Models

OpenNebula has three pre-defined user roles to implement three typical enterprise cloud scenarios:

• Data center infrastructure management

• Simple cloud provisioning model

• Advanced cloud provisioning model

1.2. Understanding OpenNebula 9

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

In the three scenarios, the Cloud Administrators manage the physical infrastructure, creates users and VDCs, prepares
base templates and images for users, etc

Cloud Administrators typically access to the cloud by using the CLI or the Admin View of Sunstone.

Role Capabilities
Cloud Admin.

• Operates the Cloud infrastructure (i.e. computing
nodes, networking fabric, storage servers)

• Creates and manages OpenNebula infrastructure
resources: Hosts, Virtual Networks, Datastores

• Creates and manages Multi-VM Applications
(Services)

• Creates new groups for VDCs
• Assigns resource providers to a VDC and sets

quota limits
• Defines base instance types to be used by the

VDCs. These types define the capacity of the
VMs (memory, cpu and additional storage) and
connectivity.

• Prepare VM images to be used by the VDCs
• Monitor the status and health of the cloud
• Generate activity reports

Data Center Infrastructure Management

This model is used to manage data center virtualization and to integrate and federate existing IT assets that can be in
different data centers. In this usage model, Users are familiar with virtualization concepts. Except for the infrastructure
resources, the web interface offeres the same operations available to the Cloud Admin. These are “Advanced Users”
that could be considered also as “Limited Cloud Administrators”.

Users can use the templates and images pre-defined by the cloud administrator, but usually are also allowed to create
their own templates and images. They are also able to manage the life-cycle of their resources, including advanced
features that may harm the VM guests, like hot-plugging of new disks, resize of Virtual Machines, modify boot
parameters, etc.

VDCs are used by the Cloud Administrator to isolate users and allocate resources but are not offered on-demand.

These “Advanced Users” typically access to the cloud by using the CLI or the User View of Sunstone. This is not the
default model configured for the group Users.

Role Capabilities
Advanced User

• Instantiates VMs using their own templates
• Creates new templates and images
• Manages their VMs, including advanced life-

cycle features
• Creates and manages Multi-VM Application (Ser-

vices)
• Check their usage and quotas
• Upload SSH keys to access the VMs

10 Chapter 1. Building your Cloud

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Simple Cloud Provisioning Model

In the simple infrastructure provisioning model, the Cloud is offering infrastructure as a service to individual Users.
Users are considered as “Cloud Users” or “Cloud Consumers”, being much more limited in their operations.These
Users access a very simple and simplified web interface that allows them to launch Virtual Machines from pre-defined
Templates. They can access their VMs, and perform basic operations like shutdown. The changes made to a VM disk
can be saved back, but new Images cannot be created from scratch.

VDCs are used by the Cloud Administrator to isolate users and allocate resources but are not offered on-demand.

These “Cloud Users” typically access to the cloud by using the Cloud View of Sunstone. This is the default model
configured for the group Users.

Role Capabilities
Cloud User

• Instantiates VMs using the templates defined by
the Cloud Admins and the images defined by the
Cloud Admins or VDC Admins.

• Instantiates VMs using their own Images saved
from a previous running VM

• Manages their VMs, including
• reboot
• power off/on (short-term switching-off)
• delete
• save a VM into a new Template
• obtain basic monitor information and status (in-

cluding IP addresses)
• Delete any previous VM template and disk snap-

shot
• Check user usage and quotas
• Upload SSH keys to access the VMs

Advanced Cloud Provisioning Model

The advanced provisioning model is an extension of the previous one where the cloud provider offers VDCs on demand
to projects, companies, departments or business units. Each VDC can define one or more users as VDC Admins. These
admins can create new users inside the VDC, and also manage the resources of the rest of the users. A VDC Admin
may, for example, shutdown a VM from other user to free group quota usage.

These VDC Admins typically access to the cloud by using the VDC Admin View of Sunstone.

The VDC Users have the capabilities described in the previous scenario and typically access to the cloud by using the
Cloud View of Sunstone.

Role Capabilities
VDC Admin.

• Creates new users in the VDC
• Operates on VDC virtual machines and disk im-

ages
• Share Saved Templates with the members of the

VDC
• Checks VDC usage and quotas

1.2. Understanding OpenNebula 11

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.3 Planning the Installation

In order to get the most out of a OpenNebula Cloud, we recommend that you create a plan with the features, perfor-
mance, scalability, and high availability characteristics you want in your deployment. This guide provides information
to plan an OpenNebula installation, so you can easily architect your deployment and understand the technologies
involved in the management of virtualized resources and their relationship.

1.3.1 Architectural Overview

OpenNebula assumes that your physical infrastructure adopts a classical cluster-like architecture with a front-end, and
a set of hosts where Virtual Machines (VM) will be executed. There is at least one physical network joining all the
hosts with the front-end.

The basic components of an OpenNebula system are:

• Front-end that executes the OpenNebula services.

• Hypervisor-enabled hosts that provide the resources needed by the VMs.

• Datastores that hold the base images of the VMs.

• Physical networks used to support basic services such as interconnection of the storage servers and OpenNebula
control operations, and VLANs for the VMs.

OpenNebula presents a highly modular architecture that offers broad support for commodity and enterprise-grade
hypervisor, monitoring, storage, networking and user management services. This guide briefly describes the different
choices that you can make for the management of the different subsystems. If your specific services are not supported
we recommend to check the drivers available in the Add-on Catalog. We also provide information and support about
how to develop new drivers.

12 Chapter 1. Building your Cloud

http://opennebula.org/addons:catalog

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.3.2 Dimensioning the Cloud

The dimension of a cloud infrastructure can be directly inferred from the expected workload in terms of VM that the
cloud infrastructure must sustain. This workload it’s also tricky to estimate, but this is a crucial exercise to build an
efficient cloud.

The main aspects to take into account at the time of dimensioning the OpenNebula cloud are:

• CPU: unless overcommitment is planned the relation is that for each CPU core that one VM wants to use, a
physical CPU core must exist. For instance, for a workload of 40 VMs with 2 CPUs the cloud will need 80
physical CPUs. These physical CPUs can be spread among different phyisical servers, for instance 10 servers
with 8 cores each, or 5 server of 16 cores each. CPU dimension can be planned ahead with overcommitment,
achieved using the CPU abd VCPU attributes (CPU states physical CPUs assigned to this VM, whereas VCPU
stated virtual CPUs to be presented to the guest OS)

• MEMORY: Planning for memory is straightforward, as there are no overcommitment of memory in OpenNeb-
ula. It is always a good practice to count for a 10% overhead of the hypervisor (this is an absolut upper limit,
depending on the hypervisor this can be adjusted). So, in order to sustain a VM workload of 45 VMs with 2Gb
of RAM each, 90Gb of physical memory is needed. The number of physical servers is important as each one
will incur on a 10% overhead due to the hypersors. For instance, 10 hypervisors with 10Gb RAM each will
contribute with 9Gb each (10% of 10Gb = 1Gb), so they will be able to sustain the estimated workload.

• STORAGE: It is important to understand how OpenNebula uses storage, mainly the difference between system
and image datastore. The image datastore is where OpenNebula stores all the images registered that can be
used to create VMs, so the rule of thumb is to devote enough space for all the images that OpenNebula will have
registered. The system datastore is where the VMs that are currently running store their disks, and it is trickier to
estimate correctly since volatile disks come into play with no counterpart in the image datastore (volatile disks
are created on the fly in the hypervisor). One valid approach is to limit the storage available to users by defining
quotas in the number of maximum VMs and also the Max Volatile Storage a user can demand, and ensuring
enough system and image datastore space to comply with the limit set in the quotas. In any case, currently,
OpenNebula allows cloud administrators to add more system and images datastores if needed.

1.3. Planning the Installation 13

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.3.3 Front-End

The machine that holds the OpenNebula installation is called the front-end. This machine needs network connectivity
to each host, and possibly access to the storage Datastores (either by direct mount or network). The base installation
of OpenNebula takes less than 50MB.

OpenNebula services include:

• Management daemon (oned) and scheduler (mm_sched)

• Web interface server (sunstone-server)

Warning: Note that these components communicate through XML-RPC and may be installed in different ma-
chines for security or performance reasons

There are several certified platforms to act as front-end for each version of OpenNebula. Refer to the platform notes
and chose the one that better fits your needs.

OpenNebula’s default database uses sqlite. If you are planning a production or medium to large scale deployment,
you should consider using MySQL.

If you are interested in setting up a high available cluster for OpenNebula, check the High OpenNebula Availability
Guide.

The maximum number of servers (virtualization hosts) that can be managed by a single OpenNebula instance (zone)
strongly depends on the performance and scalability of the underlying platform infrastructure, mainly the storage
subsystem. We do not recommend more than 500 servers within each zone, but there are users with 1,000 servers in
each zone. You may find interesting the following guide about how to tune OpenNebula for large deployments.

1.3.4 Monitoring

The monitoring subsystem gathers information relative to the hosts and the virtual machines, such as the host status,
basic performance indicators, as well as VM status and capacity consumption. This information is collected by execut-
ing a set of static probes provided by OpenNebula. The output of these probes is sent to OpenNebula in two different
ways:

• UDP-push Model: Each host periodically sends monitoring data via UDP to the frontend which collects it and
processes it in a dedicated module. This model is highly scalable and its limit (in terms of number of VMs
monitored per second) is bounded to the performance of the server running oned and the database server. Please
read the UDP-push guide for more information.

• Pull Model: OpenNebula periodically actively queries each host and executes the probes via ssh. This mode
is limited by the number of active connections that can be made concurrently, as hosts are queried sequentially.
Please read the KVM and Xen SSH-pull guide or the ESX-pull guide for more information.

Warning: Default: UDP-push Model is the default IM for KVM and Xen in OpenNebula >= 4.4.

Please check the the Monitoring Guide for more details.

1.3.5 Virtualization Hosts

The hosts are the physical machines that will run the VMs. There are several certified platforms to act as nodes for each
version of OpenNebula. Refer to the platform notes and chose the one that better fits your needs. The Virtualization
Subsystem is the component in charge of talking with the hypervisor installed in the hosts and taking the actions
needed for each step in the VM lifecycle.

14 Chapter 1. Building your Cloud

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

OpenNebula natively supports three hypervisors:

• Xen

• KVM

• VMware

Warning: Default: OpenNebula is configured to interact with hosts running KVM.

Please check the Virtualization Guide for more details of the supported virtualization technologies.

If you are interested in failover protection against hardware and operating system outages within your virtualized IT
environment, check the Virtual Machines High Availability Guide.

1.3.6 Storage

OpenNebula uses Datastores to handle the VM disk Images. A Datastore is any storage medium used to store disk
images for VMs, previous versions of OpenNebula refer to this concept as Image Repository. Typically, a datastore
will be backed by SAN/NAS servers. In general, each Datastore has to be accessible through the front-end using any
suitable technology NAS, SAN or direct attached storage.

When a VM is deployed the Images are transferred from the Datastore to the hosts. Depending on the actual storage
technology used it can mean a real transfer, a symbolic link or setting up an LVM volume.

OpenNebula is shipped with 3 different datastore classes:

• System Datastores to hold images for running VMs, depending on the storage technology used these temporal
images can be complete copies of the original image, qcow deltas or simple filesystem links.

• Image Datastores store the disk images repository. Disk images are moved, or cloned to/from the System
datastore when the VMs are deployed or shutdown; or when disks are attached or snapshoted.

1.3. Planning the Installation 15

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

• File Datastore is a special datastore used to store plain files and not disk images. The plain files can be used as
kernels, ramdisks or context files.

Image datastores can be of different type depending on the underlying storage technology:

• File-system, to store disk images in a file form. The files are stored in a directory mounted from a SAN/NAS
server.

• vmfs, a datastore specialized in VMFS format to be used with VMware hypervisors. Cannot be mounted in the
OpenNebula front-end since VMFS is not *nix compatible.

• LVM, The LVM datastore driver provides OpenNebula with the possibility of using LVM volumes instead of
plain files to hold the Virtual Images. This reduces the overhead of having a file-system in place and thus
increases performance..

• Ceph, to store disk images using Ceph block devices.

Warning: Default: The system and images datastores are configured to use a shared filesystem.

Please check the Storage Guide for more details.

1.3.7 Networking

OpenNebula provides an easily adaptable and customizable network subsystem in order to better integrate with the
specific network requirements of existing datacenters. At least two different physical networks are needed:

• A service network is needed by the OpenNebula front-end daemons to access the hosts in order to manage and
monitor the hypervisors, and move image files. It is highly recommended to install a dedicated network for this
purpose.

• A instance network is needed to offer network connectivity to the VMs across the different hosts. To make an
effective use of your VM deployments you’ll probably need to make one or more physical networks accessible
to them.

The OpenNebula administrator may associate one of the following drivers to each Host:

• dummy: Default driver that doesn’t perform any network operation. Firewalling rules are also ignored.

• fw: Firewall rules are applied, but networking isolation is ignored.

• 802.1Q: restrict network access through VLAN tagging, which also requires support from the hardware
switches.

• ebtables: restrict network access through Ebtables rules. No special hardware configuration required.

• ovswitch: restrict network access with Open vSwitch Virtual Switch.

• VMware: uses the VMware networking infrastructure to provide an isolated and 802.1Q compatible network for
VMs launched with the VMware hypervisor.

Warning: Default: The default configuration connects the virtual machine network interface to a bridge in the
physical host.

Please check the Networking Guide to find out more information of the networking technologies supported by Open-
Nebula.

16 Chapter 1. Building your Cloud

http://openvswitch.org/

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.3.8 Authentication

You can choose from the following authentication models to access OpenNebula:

• Built-in User/Password

• SSH Authentication

• X509 Authentication

• LDAP Authentication

Warning: Default: OpenNebula comes by default with an internal built-in user/password authentication.

Please check the Authentication Guide to find out more information of the auth technologies supported by OpenNebula.

1.3.9 Advanced Components

Once you have an OpenNebula cloud up and running, you can install the following advanced components:

• Multi-VM Applications and Auto-scaling: OneFlow allows users and administrators to define, execute and man-
age multi-tiered applications, or services composed of interconnected Virtual Machines with deployment de-
pendencies between them. Each group of Virtual Machines is deployed and managed as a single entity, and is
completely integrated with the advanced OpenNebula user and group management.

• Cloud Bursting: Cloud bursting is a model in which the local resources of a Private Cloud are combined with
resources from remote Cloud providers. Such support for cloud bursting enables highly scalable hosting envi-
ronments.

• Public Cloud: Cloud interfaces can be added to your Private Cloud if you want to provide partners or external
users with access to your infrastructure, or to sell your overcapacity. The following interface provide a simple
and remote management of cloud (virtual) resources at a high abstraction level: Amazon EC2 and EBS APIs.

• Application Insight: OneGate allows Virtual Machine guests to push monitoring information to OpenNebula.
Users and administrators can use it to gather metrics, detect problems in their applications, and trigger OneFlow
auto-scaling rules.

1.4 Installing the Software

This page shows you how to install OpenNebula from the binary packages.

1.4.1 Step 1. Front-end Installation

Using the packages provided in our site is the recommended method, to ensure the installation of the latest version
and to avoid possible packages divergences of different distributions. There are two alternatives here: you can add
our package repositories to your system, or visit the software menu to download the latest package for your Linux
distribution.

Remember that we offer Quickstart guides for:

• OpenNebula on CentOS and KVM

• OpenNebula on CentOS and Xen

• OpenNebula on CentOS and VMware

• OpenNebula on Ubuntu and KVM

1.4. Installing the Software 17

http://opennebula.org/software:software

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

If there are no packages for your distribution, head to the Building from Source Code guide.

1.1. Installing on CentOS/RHEL

Before installing:

• Activate the EPEL repo. In CentOS this can be done with the following commad:

yum install epel-release

There are packages for the front-end, distributed in the various components that conform OpenNebula, and packages
for the virtualization host.

To install a CentOS/RHEL OpenNebula front-end with packages from our repository, execute the following as root.

For CentOS 6.5:

cat << EOT > /etc/yum.repos.d/opennebula.repo
[opennebula]
name=opennebula
baseurl=http://downloads.opennebula.org/repo/4.10/CentOS/6/x86_64
enabled=1
gpgcheck=0
EOT
yum install opennebula-server opennebula-sunstone opennebula-ruby

For CentOS 7:

cat << EOT > /etc/yum.repos.d/opennebula.repo
[opennebula]
name=opennebula
baseurl=http://downloads.opennebula.org/repo/4.10/CentOS/7/x86_64
enabled=1
gpgcheck=0
EOT
yum install opennebula-server opennebula-sunstone opennebula-ruby

CentOS/RHEL Package Description

These are the packages available for this distribution:

• opennebula: Command Line Interface

• opennebula-server: Main OpenNebula daemon, scheduler, etc

• opennebula-sunstone: OpenNebula Sunstone and EC2

• opennebula-ruby: Ruby Bindings

• opennebula-java: Java Bindings

• opennebula-gate: Gate server that enables communication between VMs and OpenNebula

• opennebula-flow: Manages services and elasticity

• opennebula-node-kvm: Meta-package that installs the oneadmin user, libvirt and kvm

• opennebula-common: Common files for OpenNebula packages

Note: The files located in /var/lib/one/remotes are marked as configuration files.

18 Chapter 1. Building your Cloud

http://fedoraproject.org/wiki/EPEL#How_can_I_use_these_extra_packages.3F

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.2. Installing on Debian/Ubuntu

The JSON ruby library packaged with Debian 6 is not compatible with OpenNebula. To make it work a new gem
should be installed and the old one disabled. You can do so executing these commands:

$ sudo gem install json
$ sudo mv /usr/lib/ruby/1.8/json.rb /usr/lib/ruby/1.8/json.rb.no

To install OpenNebula on a Debian/Ubuntu front-end from packages from our repositories execute as root:

wget http://downloads.opennebula.org/repo/Debian/repo.key
apt-key add repo.key

Debian

echo "deb http://downloads.opennebula.org/repo/4.10/Debian/7 stable opennebula" > /etc/apt/sources.list.d/opennebula.list

Ubuntu 12.04

echo "deb http://downloads.opennebula.org/repo/4.10/Ubuntu/12.04 stable opennebula" > /etc/apt/sources.list.d/opennebula.list

Ubuntu 14.04

echo "deb http://downloads.opennebula.org/repo/4.10/Ubuntu/14.04 stable opennebula" > /etc/apt/sources.list.d/opennebula.list

To install the packages on a Debian/Ubuntu front-end:

apt-get update
apt-get install opennebula opennebula-sunstone

Debian/Ubuntu Package Description

These are the packages available for these distributions:

• opennebula-common: provides the user and common files

• ruby-opennebula: Ruby API

• libopennebula-java: Java API

• libopennebula-java-doc: Java API Documentation

• opennebula-node: prepares a node as an opennebula-node

• opennebula-sunstone: OpenNebula Sunstone Web Interface

• opennebula-tools: Command Line interface

• opennebula-gate: Gate server that enables communication between VMs and OpenNebula

• opennebula-flow: Manages services and elasticity

1.4. Installing the Software 19

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

• opennebula: OpenNebula Daemon

Note: The following files are marked as configuration files:

• /var/lib/one/remotes/datastore/ceph/ceph.conf

• /var/lib/one/remotes/datastore/lvm/lvm.conf

• /var/lib/one/remotes/datastore/vmfs/vmfs.conf

• /var/lib/one/remotes/vnm/OpenNebulaNetwork.conf

1.4.2 Step 2. Ruby Runtime Installation

Some OpenNebula components need ruby libraries. OpenNebula provides a script that installs the required gems as
well as some development libraries packages needed.

As root execute:

/usr/share/one/install_gems

The previous script is prepared to detect common linux distributions and install the required libraries. If it fails to find
the packages needed in your system, manually install these packages:

• sqlite3 development library

• mysql client development library

• curl development library

• libxml2 and libxslt development libraries

• ruby development library

• gcc and g++

• make

If you want to install only a set of gems for an specific component read Building from Source Code where it is explained
in more depth.

1.4.3 Step 3. Starting OpenNebula

Log in as the oneadmin user follow these steps:

• If you installed from packages, you should have the one/one_auth file created with a randomly-generated
password. Otherwise, set oneadmin’s OpenNebula credentials (username and password) adding the following
to ~/.one/one_auth (change password for the desired password):

$ mkdir ~/.one
$ echo "oneadmin:password" > ~/.one/one_auth
$ chmod 600 ~/.one/one_auth

Warning: This will set the oneadmin password on the first boot. From that point, you must use the ‘oneuser
passwd‘ command to change oneadmin’s password.

• You are ready to start the OpenNebula daemons:

$ one start

20 Chapter 1. Building your Cloud

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Warning: Remember to always start OpenNebula as oneadmin!

1.4.4 Step 4. Verifying the Installation

After OpenNebula is started for the first time, you should check that the commands can connect to the OpenNebula
daemon. In the front-end, run as oneadmin the command onevm:

$ onevm list
ID USER GROUP NAME STAT UCPU UMEM HOST TIME

If instead of an empty list of VMs you get an error message, then the OpenNebula daemon could not be started
properly:

$ onevm list
Connection refused - connect(2)

The OpenNebula logs are located in /var/log/one, you should have at least the files oned.log and
sched.log, the core and scheduler logs. Check oned.log for any error messages, marked with [E].

Warning: The first time OpenNebula is started, it performs some SQL queries to check if the DB exists and if it
needs a bootstrap. You will have two error messages in your log similar to these ones, and can be ignored:

[ONE][I]: Checking database version.
[ONE][E]: (..) error: no such table: db_versioning
[ONE][E]: (..) error: no such table: user_pool
[ONE][I]: Bootstraping OpenNebula database.

After installing the OpenNebula packages in the front-end the following directory structure will be used

1.4. Installing the Software 21

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.4.5 Step 5. Node Installation

5.1. Installing on CentOS/RHEL

When the front-end is installed and verified, it is time to install the packages for the nodes if you are using KVM. To
install a CentOS/RHEL OpenNebula front-end with packages from our repository, add the repo using the snippet from
the previous section and execute the following as root:

sudo yum install opennebula-node-kvm

If you are using Xen you can prepare the node with opennebula-common:

sudo yum install openebula-common

For further configuration and/or installation of other hypervisors, check their specific guides: Xen, KVM and VMware.

5.2. Installing on Debian/Ubuntu

When the front-end is installed, it is time to install the packages for the nodes if you are using KVM. To install a
Debian/Ubuntu OpenNebula front-end with packages from our repository, add the repo as described in the previous
section and then install the node package.

$ sudo apt-get install opennebula-node

For further configuration and/or installation of other hypervisors, check their specific guides: Xen, KVM and VMware.

1.4.6 Step 6. Manual Configuration of Unix Accounts

Warning: This step can be skipped if you have installed the node/common package for CentOS or Ubuntu, as it
has already been taken care of.

The OpenNebula package installation creates a new user and group named oneadmin in the front-end. This account
will be used to run the OpenNebula services and to do regular administration and maintenance tasks. That means that
you eventually need to login as that user or to use the sudo -u oneadmin method.

The hosts need also this user created and configured. Make sure you change the uid and gid by the ones you have in
the front-end.

• Get the user and group id of oneadmin. This id will be used later to create users in the hosts with the same id.
In the front-end, execute as oneadmin:

$ id oneadmin
uid=1001(oneadmin) gid=1001(oneadmin) groups=1001(oneadmin)

In this case the user id will be 1001 and group also 1001.

Then log as root in your hosts and follow these steps:

• Create the oneadmin group. Make sure that its id is the same as in the frontend. In this example 1001:

groupadd --gid 1001 oneadmin

• Create the oneadmin account, we will use the OpenNebula var directory as the home directory for this user.

useradd --uid 1001 -g oneadmin -d /var/lib/one oneadmin

22 Chapter 1. Building your Cloud

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Warning: You can use any other method to make a common oneadmin group and account in the nodes, for
example NIS.

1.4.7 Step 7. Manual Configuration of Secure Shell Access

You need to create ssh keys for the oneadmin user and configure the host machines so it can connect to them using
ssh without need for a password.

Follow these steps in the front-end:

• Generate oneadmin ssh keys:

$ ssh-keygen

When prompted for password press enter so the private key is not encrypted.

• Append the public key to ~/.ssh/authorized_keys to let oneadmin user log without the need to type
a password.

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

• Many distributions (RHEL/CentOS for example) have permission requirements for the public key authentication
to work:

$ chmod 700 ~/.ssh/
$ chmod 600 ~/.ssh/id_dsa.pub
$ chmod 600 ~/.ssh/id_dsa
$ chmod 600 ~/.ssh/authorized_keys

• Tell ssh client to not ask before adding hosts to known_hosts file. Also it is a good idea to reduced the connec-
tion timeout in case of network problems. This is configured into ~/.ssh/config, see man ssh_config
for a complete reference.:

$ cat ~/.ssh/config
ConnectTimeout 5
Host *

StrictHostKeyChecking no

• Check that the sshd daemon is running in the hosts. Also remove any Banner option from the sshd_config
file in the hosts.

• Finally, Copy the front-end /var/lib/one/.ssh directory to each one of the hosts in the same path.

To test your configuration just verify that oneadmin can log in the hosts without being prompt for a password.

1.4. Installing the Software 23

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.4.8 Step 8. Networking Configuration

A network connection is needed by the OpenNebula front-end daemons to access the hosts to manage and monitor the
hypervisors; and move image files. It is highly recommended to install a dedicated network for this purpose.

There are various network models (please check the Networking guide to find out the networking technologies sup-
ported by OpenNebula), but they all have something in common. They rely on network bridges with the same name
in all the hosts to connect Virtual Machines to the physical network interfaces.

The simplest network model corresponds to the dummy drivers, where only the network bridges are needed.

For example, a typical host with two physical networks, one for public IP addresses (attached to eth0 NIC) and the
other for private virtual LANs (NIC eth1) should have two bridges:

$ brctl show
bridge name bridge id STP enabled interfaces
br0 8000.001e682f02ac no eth0
br1 8000.001e682f02ad no eth1

24 Chapter 1. Building your Cloud

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.4.9 Step 9. Storage Configuration

OpenNebula uses Datastores to manage VM disk Images. There are two configuration steps needed to perform a basic
set up:

• First, you need to configure the system datastore to hold images for the running VMs, check the the System
Datastore Guide, for more details.

• Then you have to setup one ore more datastore for the disk images of the VMs, you can find more information
on setting up Filesystem Datastores here.

The suggested configuration is to use a shared FS, which enables most of OpenNebula VM controlling features.
OpenNebula can work without a Shared FS, but this will force the deployment to always clone the images and you
will only be able to do cold migrations.

The simplest way to achieve a shared FS backend for OpenNebula datastores is to export via NFS
from the OpenNebula front-end both the system (/var/lib/one/datastores/0) and the images
(/var/lib/one/datastores/1) datastores. They need to be mounted by all the virtualization nodes to be
added into the OpenNebula cloud.

1.4.10 Step 10. Adding a Node to the OpenNebula Cloud

To add a node to the cloud, there are four needed parameters: name/IP of the host, virtualization, network and infor-
mation driver. Using the recommended configuration above, and assuming a KVM hypervisor, you can add your host
node01 to OpenNebula in the following fashion (as oneadmin, in the front-end):

$ onehost create node01 -i kvm -v kvm -n dummy

To learn more about the host subsystem, read this guide.

1.4.11 Step 11. Next steps

Now that you have a fully functional cloud, it is time to start learning how to use it. A good starting point is this
overview of the virtual resource management.

1.5 Glossary

1.5.1 OpenNebula Components

• Front-end: Machine running the OpenNebula services.

• Host: Physical machine running a supported hypervisor. See the Host subsystem.

• Cluster: Pool of hosts that share datastores and virtual networks. Clusters are used for load balancing, high
availability, and high performance computing.

• Image Repository: Storage for registered Images. Learn more about the Storage subsystem.

• Sunstone: OpenNebula web interface. Learn more about Sunstone

• OCCI Service: Server that enables the management of OpenNebula with OCCI interface. You can use rOCCI
server to provide this service.

• Self-Service OpenNebula web interfaced towards the end user. It is implemented by configuring a user view of
the Sunstone Portal.

1.5. Glossary 25

http://gwdg.github.io/rOCCI-server/
http://gwdg.github.io/rOCCI-server/

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

• EC2 Service: Server that enables the management of OpenNebula with EC2 interface. Learn more about EC2
Service

• OCA: OpenNebula Cloud API. It is a set of libraries that ease the communication with the XML-RPC manage-
ment interface. Learn more about ruby and java APIs.

1.5.2 OpenNebula Resources

• Template: Virtual Machine definition. These definitions are managed with the onetemplate command.

• Image: Virtual Machine disk image, created and managed with the oneimage command.

• Virtual Machine: Instantiated Template. A Virtual Machine represents one life-cycle, and several Virtual
Machines can be created from a single Template. Check out the VM management guide.

• Virtual Network: A group of IP leases that VMs can use to automatically obtain IP addresses. See the Net-
working subsystem.

• VDC: Virtual Data Center, fully-isolated virtual infrastructure environments where a group of users, under the
control of the VDC administrator.

• Zone: A group of interconnected physical hosts with hypervisors controlled by OpenNebula.

1.5.3 OpenNebula Management

• ACL: Access Control List. Check the managing ACL rules guide.

• oneadmin: Special administrative account. See the Users and Groups guide.

• Federation: Several OpenNebula instances can be configured as zones.

26 Chapter 1. Building your Cloud

CHAPTER

TWO

QUICK STARTS

2.1 Quickstart: OpenNebula on CentOS 6 and KVM

The purpose of this guide is to provide users with step by step guide to install OpenNebula using CentOS 6 as the
operating system and KVM as the hypervisor.

After following this guide, users will have a working OpenNebula with graphical interface (Sunstone), at least one
hypervisor (host) and a running virtual machines. This is useful at the time of setting up pilot clouds, to quickly test
new features and as base deployment to build a large infrastructure.

Throughout the installation there are two separate roles: Frontend and Nodes. The Frontend server will execute
the OpenNebula services, and the Nodes will be used to execute virtual machines. Please not that it is possible
to follow this guide with just one host combining both the Frontend and Nodes roles in a single server. However
it is recommended execute virtual machines in hosts with virtualization extensions. To test if your host supports
virtualization extensions, please run:

grep -E 'svm|vmx' /proc/cpuinfo

If you don’t get any output you probably don’t have virtualization extensions supported/enabled in your server.

2.1.1 Package Layout

• opennebula-server: OpenNebula Daemons

• opennebula: OpenNebula CLI commands

• opennebula-sunstone: OpenNebula’s web GUI

• opennebula-java: OpenNebula Java API

• opennebula-node-kvm: Installs dependencies required by OpenNebula in the nodes

• opennebula-gate: Send information from Virtual Machines to OpenNebula

• opennebula-flow: Manage OpenNebula Services

• opennebula-context: Package for OpenNebula Guests

Additionally opennebula-common and opennebula-ruby exist but they’re intended to be used as dependen-
cies.

27

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Warning: In order to avoid problems, we recommend to disable SELinux in all the nodes, Frontend and Nodes:

vi /etc/sysconfig/selinux
...
SELINUX=disabled
...

setenforce 0
getenforce
Permissive

2.1.2 Step 1. Installation in the Frontend

Note: Commands prefixed by # are meant to be run as root. Commands prefixed by $ must be run as oneadmin.

1.1. Install the repo

Enable the EPEL repo:

yum install epel-release

Add the OpenNebula repository:

cat << EOT > /etc/yum.repos.d/opennebula.repo
[opennebula]
name=opennebula
baseurl=http://downloads.opennebula.org/repo/4.10/CentOS/6/x86_64/
enabled=1
gpgcheck=0
EOT

1.2. Install the required packages

A complete install of OpenNebula will have at least both opennebula-server and opennebula-sunstone
package:

yum install opennebula-server opennebula-sunstone

Now run install_gems to install all the gem dependencies. Choose the CentOS/RedHat if prompted:

/usr/share/one/install_gems
lsb_release command not found. If you are using a RedHat based
distribution install redhat-lsb

Select your distribution or press enter to continue without
installing dependencies.

0. Ubuntu/Debian
1. CentOS/RedHat

28 Chapter 2. Quick Starts

https://fedoraproject.org/wiki/EPEL

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.3. Configure and Start the services

There are two main processes that must be started, the main OpenNebula daemon: oned, and the graphical user
interface: sunstone.

Sunstone listens only in the loopback interface by default for security reasons. To change it edit
/etc/one/sunstone-server.conf and change :host: 127.0.0.1 to :host: 0.0.0.0.

Now we can start the services:

service opennebula start
service opennebula-sunstone start

1.4. Configure NFS

Note: Skip this section if you are using a single server for both the frontend and worker node roles.

Export /var/lib/one/ from the frontend to the worker nodes. To do so add the following to the /etc/exports
file in the frontend:

/var/lib/one/ *(rw,sync,no_subtree_check,root_squash)

Refresh the NFS exports by doing:

service rpcbind restart
service nfs restart

1.5. Configure SSH Public Key

OpenNebula will need to SSH passwordlessly from any node (including the frontend) to any other node.

Add the following snippet to ~/.ssh/config as oneadmin so it doesn’t prompt to add the keys to the
known_hosts file:

su - oneadmin
$ cat << EOT > ~/.ssh/config
Host *

StrictHostKeyChecking no
UserKnownHostsFile /dev/null

EOT
$ chmod 600 ~/.ssh/config

2.1.3 Step 2. Installation in the Nodes

2.1. Install the repo

Add the OpenNebula repository:

cat << EOT > /etc/yum.repos.d/opennebula.repo
[opennebula]
name=opennebula
baseurl=http://downloads.opennebula.org/repo/4.10/CentOS/6/x86_64/
enabled=1
gpgcheck=0
EOT

2.1. Quickstart: OpenNebula on CentOS 6 and KVM 29

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

2.2. Install the required packages

yum install opennebula-node-kvm

Start the required services:

service messagebus start
service libvirtd start

2.3. Configure the Network

Warning: Backup all the files that are modified in this section before making changes to them.

You will need to have your main interface, typically eth0, connected to a bridge. The name of the bridge should be
the same in all nodes.

To do so, substitute /etc/sysconfig/network-scripts/ifcfg-eth0 with:

DEVICE=eth0
BOOTPROTO=none
NM_CONTROLLED=no
ONBOOT=yes
TYPE=Ethernet
BRIDGE=br0

And add a new /etc/sysconfig/network-scripts/ifcfg-br0 file.

If you were using DHCP for your eth0 interface, use this template:

DEVICE=br0
TYPE=Bridge
ONBOOT=yes
BOOTPROTO=dhcp
NM_CONTROLLED=no

If you were using a static IP address use this other template:

DEVICE=br0
TYPE=Bridge
IPADDR=<YOUR_IPADDRESS>
NETMASK=<YOUR_NETMASK>
ONBOOT=yes
BOOTPROTO=static
NM_CONTROLLED=no

After these changes, restart the network:

service network restart

2.4. Configure NFS

Note: Skip this section if you are using a single server for both the frontend and worker node roles.

Mount the datastores export. Add the following to your /etc/fstab:

30 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

192.168.1.1:/var/lib/one/ /var/lib/one/ nfs soft,intr,rsize=8192,wsize=8192,noauto

Note: Replace 192.168.1.1 with the IP of the frontend.

Mount the NFS share:

mount /var/lib/one/

If the above command fails or hangs, it could be a firewall issue.

2.1.4 Step 3. Basic Usage

Note: All the operations in this section can be done using Sunstone instead of the command line. Point your browser
to: http://frontend:9869.

The default password for the oneadmin user can be found in ~/.one/one_auth which is randomly generated on
every installation.

To interact with OpenNebula, you have to do it from the oneadmin account in the frontend. We will assume all the
following commands are performed from that account. To login as oneadmin execute su - oneadmin.

3.1. Adding a Host

To start running VMs, you should first register a worker node for OpenNebula.

Issue this command for each one of your nodes. Replace localhost with your node’s hostname.

$ onehost create localhost -i kvm -v kvm -n dummy

2.1. Quickstart: OpenNebula on CentOS 6 and KVM 31

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Run onehost list until it’s set to on. If it fails you probably have something wrong in your ssh configuration.
Take a look at /var/log/one/oned.log.

3.2. Adding virtual resources

Once it’s working you need to create a network, an image and a virtual machine template.

To create networks, we need to create first a network template file mynetwork.one that contains:

NAME = "private"

BRIDGE = br0

AR = [
TYPE = IP4,
IP = 192.168.0.100,
SIZE = 3

]

Note: Replace the address range with free IPs in your host’s network. You can add more than one address range.

Now we can move ahead and create the resources in OpenNebula:

$ onevnet create mynetwork.one

$ oneimage create --name "CentOS-6.5_x86_64" \
--path "http://appliances.c12g.com/CentOS-6.5/centos6.5.qcow2.gz" \
--driver qcow2 \
--datastore default

$ onetemplate create --name "CentOS-6.5" --cpu 1 --vcpu 1 --memory 512 \
--arch x86_64 --disk "CentOS-6.5_x86_64" --nic "private" --vnc \
--ssh

You will need to wait until the image is ready to be used. Monitor its state by running oneimage list.

In order to dynamically add ssh keys to Virtual Machines we must add our ssh key to the user template, by editing the
user template:

$ EDITOR=vi oneuser update oneadmin

Add a new line like the following to the template:

SSH_PUBLIC_KEY="ssh-dss AAAAB3NzaC1kc3MAAACBANBWTQmm4Gt..."

Substitute the value above with the output of cat ~/.ssh/id_dsa.pub.

3.3. Running a Virtual Machine

To run a Virtual Machine, you will need to instantiate a template:

$ onetemplate instantiate "CentOS-6.5" --name "My Scratch VM"

Execute onevm list and watch the virtual machine going from PENDING to PROLOG to RUNNING. If the vm
fails, check the reason in the log: /var/log/one/<VM_ID>/vm.log.

32 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

2.1.5 Further information

• Planning the Installation

• Installing the Software

• FAQs. Good for troubleshooting

• Main Documentation

2.2 Quickstart: OpenNebula on CentOS 7 and KVM

The purpose of this guide is to provide users with step by step guide to install OpenNebula using CentOS 7 as the
operating system and KVM as the hypervisor.

After following this guide, users will have a working OpenNebula with graphical interface (Sunstone), at least one
hypervisor (host) and a running virtual machines. This is useful at the time of setting up pilot clouds, to quickly test
new features and as base deployment to build a large infrastructure.

Throughout the installation there are two separate roles: Frontend and Nodes. The Frontend server will execute
the OpenNebula services, and the Nodes will be used to execute virtual machines. Please not that it is possible
to follow this guide with just one host combining both the Frontend and Nodes roles in a single server. However
it is recommended execute virtual machines in hosts with virtualization extensions. To test if your host supports
virtualization extensions, please run:

grep -E 'svm|vmx' /proc/cpuinfo

If you don’t get any output you probably don’t have virtualization extensions supported/enabled in your server.

2.2.1 Package Layout

• opennebula-server: OpenNebula Daemons

• opennebula: OpenNebula CLI commands

• opennebula-sunstone: OpenNebula’s web GUI

• opennebula-java: OpenNebula Java API

• opennebula-node-kvm: Installs dependencies required by OpenNebula in the nodes

• opennebula-gate: Send information from Virtual Machines to OpenNebula

• opennebula-flow: Manage OpenNebula Services

• opennebula-context: Package for OpenNebula Guests

Additionally opennebula-common and opennebula-ruby exist but they’re intended to be used as dependen-
cies.

2.2. Quickstart: OpenNebula on CentOS 7 and KVM 33

http://wiki.opennebula.org/faq

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Warning: In order to avoid problems, we recommend to disable SELinux in all the nodes, Frontend and Nodes.

vi /etc/sysconfig/selinux
...
SELINUX=disabled
...

setenforce 0
getenforce
Permissive

Warning: Some commands may fail depending on your iptables/firewalld configuration. Disable the
firewalls entirely for testing just to rule it out.

2.2.2 Step 1. Installation in the Frontend

Note: Commands prefixed by # are meant to be run as root. Commands prefixed by $ must be run as oneadmin.

1.1. Install the repo

Enable the EPEL repo:

yum install epel-release

Add the OpenNebula repository:

cat << EOT > /etc/yum.repos.d/opennebula.repo
[opennebula]
name=opennebula
baseurl=http://downloads.opennebula.org/repo/4.10/CentOS/7/x86_64/
enabled=1
gpgcheck=0
EOT

1.2. Install the required packages

A complete install of OpenNebula will have at least both opennebula-server and opennebula-sunstone
package:

yum install opennebula-server opennebula-sunstone

Now run install_gems to install all the gem dependencies. Choose the CentOS/RedHat if prompted:

/usr/share/one/install_gems
lsb_release command not found. If you are using a RedHat based
distribution install redhat-lsb

Select your distribution or press enter to continue without
installing dependencies.

0. Ubuntu/Debian
1. CentOS/RedHat

34 Chapter 2. Quick Starts

https://fedoraproject.org/wiki/EPEL

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.3. Configure and Start the services

There are two main processes that must be started, the main OpenNebula daemon: oned, and the graphical user
interface: sunstone.

Sunstone listens only in the loopback interface by default for security reasons. To change it edit
/etc/one/sunstone-server.conf and change :host: 127.0.0.1 to :host: 0.0.0.0.

Now we can start the services:

service opennebula start
service opennebula-sunstone start

1.4. Configure NFS

Note: Skip this section if you are using a single server for both the frontend and worker node roles.

Export /var/lib/one/ from the frontend to the worker nodes. To do so add the following to the /etc/exports
file in the frontend:

/var/lib/one/ *(rw,sync,no_subtree_check,root_squash)

Refresh the NFS exports by doing:

systemctl restart nfs.service

1.5. Configure SSH Public Key

OpenNebula will need to SSH passwordlessly from any node (including the frontend) to any other node.

Add the following snippet to ~/.ssh/config as oneadmin so it doesn’t prompt to add the keys to the
known_hosts file:

su - oneadmin
$ cat << EOT > ~/.ssh/config
Host *

StrictHostKeyChecking no
UserKnownHostsFile /dev/null

EOT
$ chmod 600 ~/.ssh/config

2.2.3 Step 2. Installation in the Nodes

2.1. Install the repo

Add the OpenNebula repository:

cat << EOT > /etc/yum.repos.d/opennebula.repo
[opennebula]
name=opennebula
baseurl=http://downloads.opennebula.org/repo/4.10/CentOS/7/x86_64/
enabled=1
gpgcheck=0
EOT

2.2. Quickstart: OpenNebula on CentOS 7 and KVM 35

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

2.2. Install the required packages

yum install opennebula-node-kvm

Start the required services:

systemctl start messagebus.service
systemctl start libvirtd.service
systemctl start nfs.service

2.3. Configure the Network

Warning: Backup all the files that are modified in this section before making changes to them.

You will need to have your main interface connected to a bridge. We will do the following example with ens3 but
the name of the interface may vary. An OpenNebula requirements is that the name of the bridge should be the same in
all nodes.

To do so, substitute /etc/sysconfig/network-scripts/ifcfg-ens3 with:

DEVICE=ens3
BOOTPROTO=none
NM_CONTROLLED=no
ONBOOT=yes
TYPE=Ethernet
BRIDGE=br0

And add a new /etc/sysconfig/network-scripts/ifcfg-br0 file.

If you were using DHCP for your ens3 interface, use this template:

DEVICE=br0
TYPE=Bridge
ONBOOT=yes
BOOTPROTO=dhcp
NM_CONTROLLED=no

If you were using a static IP address use this other template:

DEVICE=br0
TYPE=Bridge
IPADDR=<YOUR_IPADDRESS>
NETMASK=<YOUR_NETMASK>
ONBOOT=yes
BOOTPROTO=static
NM_CONTROLLED=no

After these changes, restart the network:

systemctl restart network.service

2.4. Configure NFS

Note: Skip this section if you are using a single server for both the frontend and worker node roles.

Mount the datastores export. Add the following to your /etc/fstab:

36 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

192.168.1.1:/var/lib/one/ /var/lib/one/ nfs soft,intr,rsize=8192,wsize=8192,noauto

Note: Replace 192.168.1.1 with the IP of the frontend.

Mount the NFS share:

mount /var/lib/one/

If the above command fails or hangs, it could be a firewall issue.

2.2.4 Step 3. Basic Usage

Note: All the operations in this section can be done using Sunstone instead of the command line. Point your browser
to: http://frontend:9869.

The default password for the oneadmin user can be found in ~/.one/one_auth which is randomly generated on
every installation.

To interact with OpenNebula, you have to do it from the oneadmin account in the frontend. We will assume all the
following commands are performed from that account. To login as oneadmin execute su - oneadmin.

3.1. Adding a Host

To start running VMs, you should first register a worker node for OpenNebula.

Issue this command for each one of your nodes. Replace localhost with your node’s hostname.

$ onehost create localhost -i kvm -v kvm -n dummy

2.2. Quickstart: OpenNebula on CentOS 7 and KVM 37

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Run onehost list until it’s set to on. If it fails you probably have something wrong in your ssh configuration.
Take a look at /var/log/one/oned.log.

3.2. Adding virtual resources

Once it’s working you need to create a network, an image and a virtual machine template.

To create networks, we need to create first a network template file mynetwork.one that contains:

NAME = "private"

BRIDGE = br0

AR = [
TYPE = IP4,
IP = 192.168.0.100,
SIZE = 3

]

Note: Replace the address range with free IPs in your host’s network. You can add more than one address range.

Now we can move ahead and create the resources in OpenNebula:

$ onevnet create mynetwork.one

$ oneimage create --name "CentOS-7-one-4.8" \
--path http://marketplace.c12g.com/appliance/53e7bf928fb81d6a69000002/download \
--driver qcow2 \
-d default

$ onetemplate create --name "CentOS-7" \
--cpu 1 --vcpu 1 --memory 512 --arch x86_64 \
--disk "CentOS-7-one-4.8" \
--nic "private" \
--vnc --ssh --net_context

Note: If oneimage create complains because there’s not enough space available in the datastore, you can
disable the datastore capacity check in OpenNebula: /etc/one/oned.conf:DATASTORE_CAPACITY_CHECK
= "no". You need to restart OpenNebula after changing this.

You will need to wait until the image is ready to be used. Monitor its state by running oneimage list.

In order to dynamically add ssh keys to Virtual Machines we must add our ssh key to the user template, by editing the
user template:

$ EDITOR=vi oneuser update oneadmin

Add a new line like the following to the template:

SSH_PUBLIC_KEY="ssh-dss AAAAB3NzaC1kc3MAAACBANBWTQmm4Gt..."

Substitute the value above with the output of cat ~/.ssh/id_dsa.pub.

3.3. Running a Virtual Machine

To run a Virtual Machine, you will need to instantiate a template:

38 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

$ onetemplate instantiate "CentOS-7"

Execute onevm list and watch the virtual machine going from PENDING to PROLOG to RUNNING. If the vm
fails, check the reason in the log: /var/log/one/<VM_ID>/vm.log.

Note: If it stays too long in pend status you can check why by doing: onevm show <vmid>|grep
^SCHED_MESSAGE. If it reports that no datastores have enough capacity for the VM, you can force a manual deploy-
ment by running: onevm deploy <vmid> <hostid>.

2.2.5 Further information

• Planning the Installation

• Installing the Software

• FAQs. Good for troubleshooting

• Main Documentation

2.3 Quickstart: OpenNebula on CentOS 6 and Xen

The purpose of this guide is to provide users with step by step guide to install OpenNebula using CentOS 6 as the
operating system and Xen as the hypervisor.

After following this guide, users will have a working OpenNebula with graphical interface (Sunstone), at least one
hypervisor (host) and a running virtual machines. This is useful at the time of setting up pilot clouds, to quickly test
new features and as base deployment to build a large infrastructure.

Throughout the installation there are two separate roles: Frontend and Nodes. The Frontend server will execute
the OpenNebula services, and the Nodes will be used to execute virtual machines. Please not that it is possible
to follow this guide with just one host combining both the Frontend and Nodes roles in a single server. However
it is recommended execute virtual machines in hosts with virtualization extensions. To test if your host supports
virtualization extensions, please run:

grep -E 'svm|vmx' /proc/cpuinfo

If you don’t get any output you probably don’t have virtualization extensions supported/enabled in your server.

2.3.1 Package Layout

• opennebula-server: OpenNebula Daemons

• opennebula: OpenNebula CLI commands

• opennebula-sunstone: OpenNebula’s web GUI

• opennebula-java: OpenNebula Java API

• opennebula-node-kvm: Installs dependencies required by OpenNebula in the nodes

• opennebula-gate: Send information from Virtual Machines to OpenNebula

• opennebula-flow: Manage OpenNebula Services

• opennebula-context: Package for OpenNebula Guests

2.3. Quickstart: OpenNebula on CentOS 6 and Xen 39

http://wiki.opennebula.org/faq

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Additionally opennebula-common and opennebula-ruby exist but they’re intended to be used as dependen-
cies.

Warning: In order to avoid problems, we recommend to disable SELinux in all the nodes, Frontend and Nodes:

vi /etc/sysconfig/selinux
...
SELINUX=disabled
...

setenforce 0
getenforce
Permissive

2.3.2 Step 1. Installation in the Frontend

Note: Commands prefixed by # are meant to be run as root. Commands prefixed by $ must be run as oneadmin.

1.1. Install the repo

Enable the EPEL repo:

yum install epel-release

Add the OpenNebula repository:

cat << EOT > /etc/yum.repos.d/opennebula.repo
[opennebula]
name=opennebula
baseurl=http://downloads.opennebula.org/repo/4.10/CentOS/6/x86_64/
enabled=1
gpgcheck=0
EOT

1.2. Install the required packages

A complete install of OpenNebula will have at least both opennebula-server and opennebula-sunstone
package:

yum install opennebula-server opennebula-sunstone

Now run install_gems to install all the gem dependencies. Choose the CentOS/RedHat if prompted:

/usr/share/one/install_gems
lsb_release command not found. If you are using a RedHat based
distribution install redhat-lsb

Select your distribution or press enter to continue without
installing dependencies.

0. Ubuntu/Debian
1. CentOS/RedHat

40 Chapter 2. Quick Starts

https://fedoraproject.org/wiki/EPEL

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

1.3. Configure and Start the services

There are two main processes that must be started, the main OpenNebula daemon: oned, and the graphical user
interface: sunstone.

Sunstone listens only in the loopback interface by default for security reasons. To change it edit
/etc/one/sunstone-server.conf and change :host: 127.0.0.1 to :host: 0.0.0.0.

Now we can start the services:

service opennebula start
service opennebula-sunstone start

1.4. Configure NFS

Note: Skip this section if you are using a single server for both the frontend and worker node roles.

Export /var/lib/one/ from the frontend to the worker nodes. To do so add the following to the /etc/exports
file in the frontend:

/var/lib/one/ *(rw,sync,no_subtree_check,root_squash)

Refresh the NFS exports by doing:

service rpcbind restart
service nfs restart

1.5. Configure SSH Public Key

OpenNebula will need to SSH passwordlessly from any node (including the frontend) to any other node.

Add the following snippet to ~/.ssh/config as oneadmin so it doesn’t prompt to add the keys to the
known_hosts file:

su - oneadmin
$ cat << EOT > ~/.ssh/config
Host *

StrictHostKeyChecking no
UserKnownHostsFile /dev/null

EOT
$ chmod 600 ~/.ssh/config

2.3.3 Step 2. Installation in the Nodes

Warning: The process to install Xen might change in the future. Please refer to the CentOS documenation on
Xen4 CentOS6 QuickStart if any of the following steps do not work.

2.1. Install the repo

Add the CentOS Xen repo:

2.3. Quickstart: OpenNebula on CentOS 6 and Xen 41

http://wiki.centos.org/HowTos/Xen/Xen4QuickStart

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

yum install centos-release-xen

Add the OpenNebula repository:

cat << EOT > /etc/yum.repos.d/opennebula.repo
[opennebula]
name=opennebula
baseurl=http://downloads.opennebula.org/repo/4.10/CentOS/6/x86_64/
enabled=1
gpgcheck=0
EOT

2.2. Install the required packages

yum install opennebula-common xen nfs-utils ruby

Enable the Xen kernel by doing:

/usr/bin/grub-bootxen.sh

Disable xend since it is a deprecated interface:

chkconfig xend off

Now you must reboot the system in order to start with a Xen kernel.

2.3. Configure the Network

Warning: Backup all the files that are modified in this section before making changes to them.

You will need to have your main interface, typically eth0, connected to a bridge. The name of the bridge should be
the same in all nodes.

To do so, substitute /etc/sysconfig/network-scripts/ifcfg-eth0 with:

DEVICE=eth0
BOOTPROTO=none
NM_CONTROLLED=no
ONBOOT=yes
TYPE=Ethernet
BRIDGE=br0

And add a new /etc/sysconfig/network-scripts/ifcfg-br0 file.

If you were using DHCP for your eth0 interface, use this template:

DEVICE=br0
TYPE=Bridge
ONBOOT=yes
BOOTPROTO=dhcp
NM_CONTROLLED=no

If you were using a static IP address use this other template:

DEVICE=br0
TYPE=Bridge
IPADDR=<YOUR_IPADDRESS>

42 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

NETMASK=<YOUR_NETMASK>
ONBOOT=yes
BOOTPROTO=static
NM_CONTROLLED=no

After these changes, restart the network:

service network restart

2.4. Configure NFS

Note: Skip this section if you are using a single server for both the frontend and worker node roles.

Mount the datastores export. Add the following to your /etc/fstab:

192.168.1.1:/var/lib/one/ /var/lib/one/ nfs soft,intr,rsize=8192,wsize=8192,noauto

Note: Replace 192.168.1.1 with the IP of the frontend.

Mount the NFS share:

mount /var/lib/one/

If the above command fails or hangs, it could be a firewall issue.

2.3.4 Step 3. Basic Usage

Note: All the operations in this section can be done using Sunstone instead of the command line. Point your browser
to: http://frontend:9869.

The default password for the oneadmin user can be found in ~/.one/one_auth which is randomly generated on
every installation.

2.3. Quickstart: OpenNebula on CentOS 6 and Xen 43

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

To interact with OpenNebula, you have to do it from the oneadmin account in the frontend. We will assume all the
following commands are performed from that account. To login as oneadmin execute su - oneadmin.

3.1. Adding a Host

To start running VMs, you should first register a worker node for OpenNebula.

Issue this command for each one of your nodes. Replace localhost with your node’s hostname.

$ onehost create localhost -i xen -v xen -n dummy

Run onehost list until it’s set to on. If it fails you probably have something wrong in your ssh configuration.
Take a look at /var/log/one/oned.log.

3.2. Adding virtual resources

Once it’s working you need to create a network, an image and a virtual machine template.

To create networks, we need to create first a network template file mynetwork.one that contains:

NAME = "private"

BRIDGE = br0

AR = [
TYPE = IP4,
IP = 192.168.0.100,
SIZE = 3

]

44 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Note: Replace the address range with free IPs in your host’s network. You can add more than one address range.

Now we can move ahead and create the resources in OpenNebula:

$ onevnet create mynetwork.one

$ oneimage create --name "CentOS-6.5_x86_64" \
--path "http://appliances.c12g.com/CentOS-6.5/centos6.5.qcow2.gz" \
--driver qcow2 \
--datastore default

$ onetemplate create --name "CentOS-6.5" --cpu 1 --vcpu 1 --memory 512 \
--arch x86_64 --disk "CentOS-6.5_x86_64" --nic "private" --vnc \
--ssh

You will need to wait until the image is ready to be used. Monitor its state by running oneimage list.

We must specify the desired bootloader to the template we just created. To do so execute the following command:

$ EDITOR=vi onetemplate update CentOS-6.5

Add a new line to the OS section of the template that specifies the bootloader:

OS=[
BOOTLOADER = "pygrub",
ARCH="x86_64"]

In order to dynamically add ssh keys to Virtual Machines we must add our ssh key to the user template, by editing the
user template:

$ EDITOR=vi oneuser update oneadmin

Add a new line like the following to the template:

SSH_PUBLIC_KEY="ssh-dss AAAAB3NzaC1kc3MAAACBANBWTQmm4Gt..."

Substitute the value above with the output of cat ~/.ssh/id_dsa.pub.

3.3. Running a Virtual Machine

To run a Virtual Machine, you will need to instantiate a template:

$ onetemplate instantiate "CentOS-6.5" --name "My Scratch VM"

Execute onevm list and watch the virtual machine going from PENDING to PROLOG to RUNNING. If the vm
fails, check the reason in the log: /var/log/one/<VM_ID>/vm.log.

2.3.5 Further information

• Planning the Installation

• Installing the Software

• FAQs. Good for troubleshooting

• Main Documentation

2.3. Quickstart: OpenNebula on CentOS 6 and Xen 45

http://wiki.opennebula.org/faq

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

2.4 Quickstart: OpenNebula on CentOS 6 and ESX 5.1

This guide aids in the process of quickly get a VMware-based OpenNebula cloud up and running on CentOS 6.
After following this guide, users will have a working OpenNebula with graphical interface (Sunstone), at least one
hypervisor (host) and a running virtual machine. This is useful at the time of setting up pilot clouds, to quickly test
new features and as base deployment to build a larger infrastructure.

Throughout the installation there are two separate roles: Frontend and Virtualization Nodes. The Frontend server will
execute the OpenNebula services, and the Nodes will be used to execute virtual machines.

2.4.1 Package Layout

• opennebula-server: OpenNebula Daemons

• opennebula: OpenNebula CLI commands

• opennebula-sunstone: OpenNebula’s web GUI

• opennebula-java: OpenNebula Java API

• opennebula-node-kvm: Installs dependencies required by OpenNebula in the nodes

• opennebula-gate: Send information from Virtual Machines to OpenNebula

• opennebula-flow: Manage OpenNebula Services

• opennebula-context: Package for OpenNebula Guests

Additionally opennebula-common and opennebula-ruby exist but they’re intended to be used as dependen-
cies.

2.4.2 Step 1. Infrastructure Set-up

The infrastructure needs to be set up in a similar fashion as the one depicted in the figure.

Warning: A ESX version 5.1 was used to create this guide. This guide may be useful for other versions of ESX,
although the configuration (and therefore your mileage) may vary.

46 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

In this guide it is assumed that at least two physical servers are available, one to host the OpenNebula front-end and
one to be used as a ESX virtualization node (this is the one you need to configure in the following section). The figure
depicts one more ESX host, to show that the pilot cloud is ready to grow just by adding more virtualization nodes.

Front-End

• Operating System: Centos 6.x

• Required extra repository: EPEL

• Required packages: NFS, libvirt

Let’s install the repository and required packages. As root in the front-end:

yum install epel-release
cat << EOT > /etc/yum.repos.d/opennebula.repo
[opennebula]
name=opennebula
baseurl=http://downloads.opennebula.org/repo/4.10/CentOS/6/x86_64/
enabled=1
gpgcheck=0

2.4. Quickstart: OpenNebula on CentOS 6 and ESX 5.1 47

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

EOT

yum install nfs-utils nfs-utils-lib libvirt

Virtualization node

• Operating System: ESX 5.1

Warning: The ESX hosts needs to be configured. To achieve this, you will need access to a Windows machine
with the Virtual Infrastructure Client (vSphere client) install. The VI client can be downloaded from the ESX node,
by pointing a browser to its IP.

Warning: The ESX hosts need to be properly licensed, with write access to the exported API (as the Evaluation
license does). More information on valid licenses here.

2.4.3 Step 2. OpenNebula Front-end Set-up

2.1 OpenNebula installation

With the repository added, installing OpenNebula is straightforward (as root):

yum install opennebula-server opennebula-sunstone

Warning: Do not start OpenNebula at this point, some pre configuration needs to be done. Starting OpenNebula
is not due until here.

Find out the uid and gid of oneadmin, we will need it for the next section:

$ id oneadmin
uid=499(oneadmin) gid=498(oneadmin)

In order to avoid problems, we recommend to disable SELinux for the pilot cloud front-end (sometimes it is the root
of all evil):

vi /etc/sysconfig/selinux
...
SELINUX=disabled
...

setenforce 0
getenforce
Permissive

2.2 NFS configuration

The front-end needs to export via NFS two datastores (the system and the images datastore). This is required just
so the ESX has access to two different datastores, and this guides uses NFS exported from the front-end to achieve
this. This can be seamlessly replaced with two iSCSI backed datastores or even two local hard disks. In any case, we
will use the ‘vmfs’ drivers to manage both datastores, independently of the storage backend. See the VMFS Datastore
Guide for more details.

Let’s configure the NFS server. You will need to allow incoming connections, here we will simply stop iptables (as
root):

$ sudo su - oneadmin

48 Chapter 2. Quick Starts

http://www.virtuallyghetto.com/2011/06/dreaded-faultrestrictedversionsummary.html

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

$ sudo vi /etc/exports
/var/lib/one/datastores/0 *(rw,sync,no_subtree_check,root_squash,anonuid=499,anongid=498)
/var/lib/one/datastores/1 *(rw,sync,no_subtree_check,root_squash,anonuid=499,anongid=498)

$ sudo service iptables stop
$ sudo service nfs start

$ sudo exportfs -a

Warning: Make sure anonuid and anongid are set to the oneadmin uid and gid.

2.3 Networking

There must be connection between the front-end and the ESX node. This can be tested with the ping command:

$ ping <esx-ip>

2.4.4 Step 3. VMware Virtualization Node Set-up

This is probably the step that involves more work to get the pilot cloud up and running, but it is crucial to ensure its
correct functioning. The ESX that is going to be used as worker node needs the following steps:

3.1 Creation of a oneadmin user

With the VI client connected to the ESX host, go to the “local Users & Groups” and add a new user like shown in
the figure (the UID is important, it needs to match the one of the front-end.). Make sure that you are selecting the
“Grant shell to this user” checkbox, and write down the password you enter.

2.4. Quickstart: OpenNebula on CentOS 6 and ESX 5.1 49

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Afterwards, go to the “Permissions” tab and assign the “Administrator” Role to oneadmin (right click → Add Permis-
sion...).

50 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

3.2 Grant ssh access

Again in the VI client go to Configuration → Security Profile → Services Properties (Upper right). Click on the SSH
label, select the “Options” button, and then “Start”. You can set it to start and stop with the host, as seen on the picture.

2.4. Quickstart: OpenNebula on CentOS 6 and ESX 5.1 51

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Then the following needs to be done:

• Connect via ssh to the OpenNebula front-end as the oneadmin user. Copy the output of the following command
to the clipboard:

$ ssh-keygen
Enter an empty passphrase

$ cat .ssh/id_rsa.pub

• Connect via ssh to the ESX worker node (as oneadmin). Run the following from the front-end:

52 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

$ ssh <esx-ip>
Enter the password you set in the step 3.1

$ su

mkdir /etc/ssh/keys-oneadmin
chmod 755 /etc/ssh/keys-oneadmin
vi /etc/ssh/keys-oneadmin/authorized_keys
paste here the contents of oneadmin's id_rsa.pub and exit vi
chown oneadmin /etc/ssh/keys-oneadmin/authorized_keys
chmod 600 /etc/ssh/keys-oneadmin/authorized_keys
chmod +s /sbin/vmkfstools /bin/vim-cmd # This is needed to create volatile disks

• Now oneadmin should be able to ssh without been prompted for a password

$ ssh <esx-ip>

3.3 Mount datastores

We need now to mount the two datastores exported by default by the OpenNebula front-end. First, you need to make
sure that the firewall will allow the NFS Client to connect to the front-end. Go to Configuration → Software →
Security Profile, and enable the row NFS Client:

2.4. Quickstart: OpenNebula on CentOS 6 and ESX 5.1 53

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Again in the VI client, go to Configuration → Storage → Add Storage (Upper right). We need to add two datastores
(0 and 1). The picture shows the details for the datastore 100, to add datastore 0 and 1 simply change the reference
from 100 to 0 and then 1 in the Folder and Datastore Name textboxes.

Please note that the IP of the server displayed may not correspond with your value, which has to be the IP your
front-end uses to connect to the ESX.

54 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

The paths to be used as input:

/var/lib/one/datastores/0

/var/lib/one/datastores/1

More info on datastores and different possible configurations.

3.4 Configure VNC

Open an ssh connection to the ESX as root, and:

cd /etc/vmware
chown -R root firewall/
chmod 7777 firewall/
cd firewall/
chmod 7777 service.xml

Add the following to /etc/vmware/firewall/service.xml

vi /etc/vmware/firewall/service.xml

Warning: The service id must be the last service id+1. It will depend on your firewall configuration

2.4. Quickstart: OpenNebula on CentOS 6 and ESX 5.1 55

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

<!-- VNC -->
<service id="0033">
<id>VNC</id>
<rule id='0000'>

<direction>outbound</direction>
<protocol>tcp</protocol>
<porttype>dst</porttype>
<port>

<begin>5800</begin>
<end>5999</end>

</port>
</rule>
<rule id='0001'>

<direction>inbound</direction>
<protocol>tcp</protocol>
<porttype>dst</porttype>
<port>

<begin>5800</begin>
<end>5999</end>

</port>
</rule>
<enabled>true</enabled>
<required>false</required>

</service>

Refresh the firewall

/sbin/esxcli network firewall refresh
/sbin/esxcli network firewall ruleset list

2.4.5 Step 4. OpenNebula Configuration

Let’s configure OpenNebula in the front-end to allow it to use the ESX hypervisor. The following must be run under
the “oneadmin” account.

4.1 Configure oned and Sunstone

Edit /etc/one/oned.conf with “sudo” and uncomment the following:

#***
DataStore Configuration
#***
DATASTORE_LOCATION: *Default* Path for Datastores in the hosts. It IS the
same for all the hosts in the cluster. DATASTORE_LOCATION IS ONLY FOR THE
HOSTS AND *NOT* THE FRONT-END. It defaults to /var/lib/one/datastores (or
$ONE_LOCATION/var/datastores in self-contained mode)
#
DATASTORE_BASE_PATH: This is the base path for the SOURCE attribute of
the images registered in a Datastore. This is a default value, that can be
changed when the datastore is created.
#***

DATASTORE_LOCATION = /vmfs/volumes

DATASTORE_BASE_PATH = /vmfs/volumes

#---
VMware Information Driver Manager Configuration

56 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

#---
IM_MAD = [

name = "vmware",
executable = "one_im_sh",
arguments = "-c -t 15 -r 0 vmware"]

#---
VMware Virtualization Driver Manager Configuration
#---
VM_MAD = [

name = "vmware",
executable = "one_vmm_sh",
arguments = "-t 15 -r 0 vmware -s sh",
default = "vmm_exec/vmm_exec_vmware.conf",
type = "vmware"]

Edit /etc/one/sunstone-server.conf with “sudo” and allow incoming connections from any IP:

sudo vi /etc/one/sunstone-server.conf

Server Configuration
#
:host: 0.0.0.0
:port: 9869

4.2 Add the ESX credentials

$ sudo vi /etc/one/vmwarerc
<Add the ESX oneadmin password, set in section 3.1>
Username and password of the VMware hypervisor
:username: "oneadmin"
:password: "password"

Warning: Do not edit :libvirt_uri:, the HOST placeholder is needed by the drivers

4.3 Start OpenNebula

Start OpenNebula and Sunstone. As root in the front-end

service opennebula start
service opennebula-sunstone start

If no error message is shown, then everything went smooth!

4.4 Configure physical resources

Let’s configure both system and image datastores:

$ onedatastore update 0
SHARED="YES"
TM_MAD="vmfs"
TYPE="SYSTEM_DS"
BASE_PATH="/vmfs/volumes"

$ onedatastore update 1
TM_MAD="vmfs"
DS_MAD="vmfs"
BASE_PATH="/vmfs/volumes"
CLONE_TARGET="SYSTEM"
DISK_TYPE="FILE"
LN_TARGET="NONE"

2.4. Quickstart: OpenNebula on CentOS 6 and ESX 5.1 57

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

TYPE="IMAGE_DS"
BRIDGE_LIST="esx-ip"

$ onedatastore chmod 1 644

And the ESX Host:

$ onehost create <esx-ip> -i vmware -v vmware -n dummy

4.5 Create a regular cloud user

$ oneuser create oneuser <mypassword>

2.4.6 Step 5. Using the Cloud through Sunstone

Ok, so now that everything is in place, let’s start using your brand new OpenNebula cloud! Use your browser to access
Sunstone. The URL would be http://@IP-of-the-front-end@:9869

Introduce the credentials for the “oneuser” user (with the chosen password in the previous section) you will get to see
the Cloud View dashboard. Log out and now log in as “oneadmin”, you will notice the access to more functionality
(basically, the administration and physical infrastructure management tasks)

It is time to launch our first VM. Let’s use one of the pre created appliances found in the marketplace.

Logged in as “oneadmin”, go to the Marketplace tab in Sunstone (in the left menu), and select the “ttylinux-VMware”
row. Click on the “Import to local infrastructure” button in the upper right, and set the new image a name (use “ttylinux
- VMware”) and place it in the “VMwareImages” datastore. If you go to the Virtual Resources/Image tab, you will see
that the new Image will eventually change its status from LOCKED to READY.

Now we need to create a template that uses this image. Go to the Virtual Resources/Templates tab, click on ”+” and
follow the wizard, or use the “Advanced mode” tab of the wizard to paste the following:

58 Chapter 2. Quick Starts

http://marketplace.c12g.com/

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

NAME = "ttylinux"
CPU = "1"
MEMORY = "512"

DISK = [
IMAGE = "ttylinux - VMware",
IMAGE_UNAME = "oneuser"

]

GRAPHICS = [
TYPE = "vnc",
LISTEN = "0.0.0.0"

]

Select the newly created template and click on the Instantiate button. You can now proceed to the “Virtual Machines”
tab. Once the VM is in state RUNNING you can click on the VNC icon and you should see the ttylinux login
(root/password).

Please note that the minimal ttylinux VM does not come with the VMware Tools, and cannot be gracefully shutdown.
Use the “Cancel” action instead.

And that’s it! You have now a fully functional pilot cloud. You can now create your own virtual machines, or import
other appliances from the marketplace, like Centos 6.2.

Enjoy!

2.4.7 Step 6. Next Steps

• Follow the VMware Virtualization Driver Guide for the complete installation and tuning reference, and how to
enable the disk attach/detach functionality, and vMotion live migration.

• OpenNebula can use VMware native networks to provide network isolation through VLAN tagging.

For your reference:

• Planning the Installation

• Installing the Software

• FAQs. Good for troubleshooting

• Main Documentation

Warning: Did we miss something? Please let us know!

2.5 Quickstart: OpenNebula on Ubuntu 14.04 and KVM

The purpose of this guide is to provide users with step by step guide to install OpenNebula using Ubuntu 14.04 as the
operating system and KVM as the hypervisor.

After following this guide, users will have a working OpenNebula with graphical interface (Sunstone), at least one
hypervisor (host) and a running virtual machines. This is useful at the time of setting up pilot clouds, to quickly test
new features and as base deployment to build a large infrastructure.

Throughout the installation there are two separate roles: Frontend and Nodes. The Frontend server will execute
the OpenNebula services, and the Nodes will be used to execute virtual machines. Please not that it is possible
to follow this guide with just one host combining both the Frontend and Nodes roles in a single server. However

2.5. Quickstart: OpenNebula on Ubuntu 14.04 and KVM 59

http://marketplace.c12g.com/appliance/4ff2ce348fb81d4406000003
http://wiki.opennebula.org/faq
mailto:contact@opennebula.org?subject=Feedback-on-OpenNebula-VMware-Sandbox

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

it is recommended execute virtual machines in hosts with virtualization extensions. To test if your host supports
virtualization extensions, please run:

grep -E 'svm|vmx' /proc/cpuinfo

If you don’t get any output you probably don’t have virtualization extensions supported/enabled in your server.

2.5.1 Package Layout

• opennebula-common: Provides the user and common files

• ruby-opennebula: All ruby libraries

• opennebula-node: Prepares a node as an opennebula-node

• opennebula-sunstone: OpenNebula Sunstone Web Interface

• opennebula-tools: Command Line interface

• opennebula-gate: Gate server that enables communication between VMs and OpenNebula

• opennebula-flow: Manages services and elasticity

• libopennebula-java: Java Language bindings for OpenNebula API

• opennebula: OpenNebula Daemon

• libopennebula-java: Java Language bindings for OpenNebula API

2.5.2 Step 1. Installation in the Frontend

Warning: Commands prefixed by # are meant to be run as root. Commands prefixed by $ must be run as
oneadmin.

1.1. Install the repo

Add the OpenNebula repository:

wget -q -O- http://downloads.opennebula.org/repo/Ubuntu/repo.key | apt-key add -
echo "deb http://downloads.opennebula.org/repo/4.10/Ubuntu/14.04/ stable opennebula" \

> /etc/apt/sources.list.d/opennebula.list

1.2. Install the required packages

apt-get update
apt-get install opennebula opennebula-sunstone nfs-kernel-server

1.3. Configure and Start the services

There are two main processes that must be started, the main OpenNebula daemon: oned, and the graphical user
interface: sunstone.

Sunstone listens only in the loopback interface by default for security reasons. To change it edit
/etc/one/sunstone-server.conf and change :host: 127.0.0.1 to :host: 0.0.0.0.

60 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Now we must restart Sunstone:

/etc/init.d/opennebula-sunstone restart

1.4. Configure NFS

Warning: Skip this section if you are using a single server for both the frontend and worker node roles.

Export /var/lib/one/ from the frontend to the worker nodes. To do so add the following to the /etc/exports
file in the frontend:

/var/lib/one/ *(rw,sync,no_subtree_check,root_squash)

Refresh the NFS exports by doing:

service nfs-kernel-server restart

1.5. Configure SSH Public Key

OpenNebula will need to SSH passwordlessly from any node (including the frontend) to any other node.

To do so run the following commands:

su - oneadmin
$ cp ~/.ssh/id_rsa.pub ~/.ssh/authorized_keys

Add the following snippet to ~/.ssh/config so it doesn’t prompt to add the keys to the known_hosts file:

$ cat << EOT > ~/.ssh/config
Host *

StrictHostKeyChecking no
UserKnownHostsFile /dev/null

EOT
$ chmod 600 ~/.ssh/config

2.5.3 Step 2. Installation in the Nodes

2.1. Install the repo

Add the OpenNebula repository:

wget -q -O- http://downloads.opennebula.org/repo/Ubuntu/repo.key | apt-key add -
echo "deb http://downloads.opennebula.org/repo/4.8/Ubuntu/14.04/ stable opennebula" > \

/etc/apt/sources.list.d/opennebula.list

2.2. Install the required packages

apt-get update
apt-get install opennebula-node nfs-common bridge-utils

2.5. Quickstart: OpenNebula on Ubuntu 14.04 and KVM 61

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

2.3. Configure the Network

Warning: Backup all the files that are modified in this section before making changes to them.

You will need to have your main interface, typically eth0, connected to a bridge. The name of the bridge should be
the same in all nodes.

If you were using DHCP for your eth0 interface, replace /etc/network/interfaces with:

auto lo
iface lo inet loopback

auto br0
iface br0 inet dhcp

bridge_ports eth0
bridge_fd 9
bridge_hello 2
bridge_maxage 12
bridge_stp off

If you were using a static IP addresses instead, use this other template:

auto lo
iface lo inet loopback

auto br0
iface br0 inet static

address 192.168.0.10
network 192.168.0.0
netmask 255.255.255.0
broadcast 192.168.0.255
gateway 192.168.0.1
bridge_ports eth0
bridge_fd 9
bridge_hello 2
bridge_maxage 12
bridge_stp off

After these changes, restart the network:

/etc/init.d/networking restart

2.4. Configure NFS

Warning: Skip this section if you are using a single server for both the frontend and worker node roles.

Mount the datastores export. Add the following to your /etc/fstab:

192.168.1.1:/var/lib/one/ /var/lib/one/ nfs soft,intr,rsize=8192,wsize=8192,noauto

Warning: Replace 192.168.1.1 with the IP of the frontend.

Mount the NFS share:

62 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

mount /var/lib/one/

If the above command fails or hangs, it could be a firewall issue.

2.5. Configure Qemu

The oneadmin user must be able to manage libvirt as root:

cat << EOT > /etc/libvirt/qemu.conf
user = "oneadmin"
group = "oneadmin"
dynamic_ownership = 0
EOT

Restart libvirt to capture these changes:

service libvirt-bin restart

2.5.4 Step 3. Basic Usage

Warning: All the operations in this section can be done using Sunstone instead of the command line. Point your
browser to: http://frontend:9869.

The default password for the oneadmin user can be found in ~/.one/one_auth which is randomly generated on
every installation.

To interact with OpenNebula, you have to do it from the oneadmin account in the frontend. We will assume all the
following commands are performed from that account. To login as oneadmin execute su - oneadmin.

2.5. Quickstart: OpenNebula on Ubuntu 14.04 and KVM 63

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

3.1. Adding a Host

To start running VMs, you should first register a worker node for OpenNebula.

Issue this command for each one of your nodes. Replace localhost with your node’s hostname.

$ onehost create localhost -i kvm -v kvm -n dummy

Run onehost list until it’s set to on. If it fails you probably have something wrong in your ssh configuration.
Take a look at /var/log/one/oned.log.

3.2. Adding virtual resources

Once it’s working you need to create a network, an image and a virtual machine template.

To create networks, we need to create first a network template file mynetwork.one that contains:

NAME = "private"

BRIDGE = br0

AR = [
TYPE = IP4,
IP = 192.168.0.100,
SIZE = 3

]

Warning: Replace the address range with free IPs in your host’s network. You can add more than one address
range.

Now we can move ahead and create the resources in OpenNebula:

$ onevnet create mynetwork.one

$ oneimage create --name "CentOS-6.5_x86_64" \
--path "http://appliances.c12g.com/CentOS-6.5/centos6.5.qcow2.gz" \
--driver qcow2 \
--datastore default

$ onetemplate create --name "CentOS-6.5" --cpu 1 --vcpu 1 --memory 512 \
--arch x86_64 --disk "CentOS-6.5_x86_64" --nic "private" --vnc \
--ssh

You will need to wait until the image is ready to be used. Monitor its state by running oneimage list.

In order to dynamically add ssh keys to Virtual Machines we must add our ssh key to the user template, by editing the
user template:

$ EDITOR=vi oneuser update oneadmin

Add a new line like the following to the template:

SSH_PUBLIC_KEY="ssh-dss AAAAB3NzaC1kc3MAAACBANBWTQmm4Gt..."

Substitute the value above with the output of cat ~/.ssh/id_dsa.pub.

64 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

3.3. Running a Virtual Machine

To run a Virtual Machine, you will need to instantiate a template:

$ onetemplate instantiate "CentOS-6.5" --name "My Scratch VM"

Execute onevm list and watch the virtual machine going from PENDING to PROLOG to RUNNING. If the vm
fails, check the reason in the log: /var/log/one/<VM_ID>/vm.log.

2.5.5 Further information

• Planning the Installation

• Installing the Software

• FAQs. Good for troubleshooting

• Main Documentation

2.6 Quickstart: Create Your First VDC

This guide will provide a quick example of how to partition your cloud for a VDC. In short, a VDC is a group of users
with part of the physical resources assigned to them. The Understanding OpenNebula guide explains the OpenNebula
provisioning model in detail.

2.6.1 Step 1. Create a Cluster

We will first create a cluster, ‘web-dev’, where we can group hosts, datastores and virtual networks for the new VDC.

$ onehost list
ID NAME CLUSTER RVM ALLOCATED_CPU ALLOCATED_MEM STAT
0 host01 web-dev 0 0 / 200 (0%) 0K / 7.5G (0%) on
1 host02 web-dev 0 0 / 200 (0%) 0K / 7.5G (0%) on
2 host03 - 0 0 / 200 (0%) 0K / 7.5G (0%) on
3 host04 - 0 0 / 200 (0%) 0K / 7.5G (0%) on

$ onedatastore list
ID NAME SIZE AVAIL CLUSTER IMAGES TYPE DS TM
0 system 113.3G 25% web-dev 0 sys - shared
1 default 113.3G 25% web-dev 1 img fs shared
2 files 113.3G 25% - 0 fil fs ssh

$ onevnet list
ID USER GROUP NAME CLUSTER TYPE BRIDGE LEASES
0 oneadmin oneadmin private web-dev R virbr0 0

2.6. Quickstart: Create Your First VDC 65

http://wiki.opennebula.org/faq

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

2.6.2 Step 2. Create a VDC Group

We can now create the new group, named also ‘web-dev’. This group, or VDC, will have a special admin user,
‘web-dev-admin’. This admin user will be able to create new users inside the VDC.

When a new group is created, you will also have the opportunity to configure different options, like the available
Sunstone views. Another thing that can be configured is if the virtual resources will be shared for all the users of the
VDC, or private.

$ onegroup create --name web-dev --admin_user web-dev-admin --admin_password abcd
ID: 100

$ onegroup add_provider 100 0 web-dev

66 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

2.6. Quickstart: Create Your First VDC 67

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

2.6.3 Step 3. Optionally, Set Quotas

The cloud administrator can set usage quotas for the VDC. In this case, we will put a limit of 10 VMs.

$ onegroup show web-dev
GROUP 100 INFORMATION
ID : 100
NAME : web-dev

GROUP TEMPLATE
GROUP_ADMINS="web-dev-admin"
GROUP_ADMIN_VIEWS="vdcadmin"
SUNSTONE_VIEWS="cloud"

USERS
ID
2

RESOURCE PROVIDERS
ZONE CLUSTER

0 100

RESOURCE USAGE & QUOTAS

NUMBER OF VMS MEMORY CPU VOLATILE_SIZE
0 / 10 0M / 0M 0.00 / 0.00 0M / 0M

68 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

2.6.4 Step 4. Prepare Virtual Resources for the Users

The cloud administrator has to create the Virtual Machine Templates and Images that the VDC users will instantiate.
If you don’t have any working Image yet, import the ttylinux testing appliance from the marketplace.

2.6. Quickstart: Create Your First VDC 69

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Now you need to create a VM Template that uses the new Image. Make sure you set the features mentioned in the
Cloud View guide, specifically the logo, description, ssh key, and user inputs.

The new Template will be owned by oneadmin. To make it available to all users (including the ones of the new
VDC), check the OTHER USE permission for both the Template and the Image. Read more about assigning virtual
resources to a VDC in the Managing Groups & VDC guide.

70 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

You can also prepare a Service Template. A Service is a group of interconnected Virtual Machines with deployment
dependencies between them.

Create a basic Service with two roles: master (x1) and slave (x2). Check ‘master’ as the parent role of ‘slave’. For
testing purposes, both can use the ttylinux VM Template. This Service Template also needs to be shared with other
users, changing the OTHER USE permission.

2.6. Quickstart: Create Your First VDC 71

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

2.6.5 Step 5. Using the Cloud as a VDC Admin

If you login as the ‘web-dev-admin’, you will see a simplified interface, the VDC admin view. This view hides the
physical infrastructure, but allows some administration tasks to be performed.

72 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

The VDC admin can create new user accounts, that will belong to the same VDC group. They can also see the current
resource usage of all the VDC users, and set quota limits for each one of them.

2.6. Quickstart: Create Your First VDC 73

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

The VDC admin can manage the Services, VMs and Templates of other users in the VDC. The resources of a specific
user can be filtered in the list views for each resource type or can be listed in the detailed view of the user.

74 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

Although the cloud administrator is the only one that can create new base Images and Templates, the VDC admin can
customize existing Templates, and share them with the rest of the VDC users.

Create a new user, and login again.

2.6.6 Step 6. Using the Cloud as a Regular User

The regular users of the VDC use the Cloud View, an even more simplified view of their virtual resources.

2.6. Quickstart: Create Your First VDC 75

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

The end users can provision new VMs and Services from the templates prepared by the administrators.

76 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

They can also manage their own VMs and Services: see their monitorization, shutdown them, and save the changes
made.

2.6. Quickstart: Create Your First VDC 77

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

The users can perform basic administration on their account. They can check his current usage and quotas, or generate
accounting reports.

78 Chapter 2. Quick Starts

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

From the user settings tab, the users can also change their password, language, and ssh key.

2.6. Quickstart: Create Your First VDC 79

OpenNebula 4.10 Design and Installation Guide, Release 4.10.2

80 Chapter 2. Quick Starts

	Building your Cloud
	An Overview of OpenNebula
	Understanding OpenNebula
	Planning the Installation
	Installing the Software
	Glossary

	Quick Starts
	Quickstart: OpenNebula on CentOS 6 and KVM
	Quickstart: OpenNebula on CentOS 7 and KVM
	Quickstart: OpenNebula on CentOS 6 and Xen
	Quickstart: OpenNebula on CentOS 6 and ESX 5.1
	Quickstart: OpenNebula on Ubuntu 14.04 and KVM
	Quickstart: Create Your First VDC

