
OpenNebula 4.10 Advanced
Administration Guide

Release 4.10.2

OpenNebula Project

January 16, 2015

CONTENTS

1 Multi-VM Applications and Auto-scaling 1
1.1 OneFlow . 1
1.2 OneFlow Server Configuration . 1
1.3 Managing Multi-tier Applications . 5
1.4 Application Auto-scaling . 20

2 Data Center Federation 29
2.1 Data Center Federation . 29
2.2 OpenNebula Federation Configuration . 30
2.3 OpenNebula Federation Management . 35

3 Scalability 37
3.1 Configuring Sunstone for Large Deployments . 37
3.2 Configuring OpenNebula for Large Deployments . 40

4 High Availability 43
4.1 Virtual Machines High Availability . 43
4.2 OpenNebula High Availability . 44

5 Cloud Bursting 51
5.1 Cloud Bursting . 51
5.2 Amazon EC2 Driver . 52
5.3 SoftLayer Driver . 58
5.4 Azure Driver . 66

6 Application Insight 75
6.1 OneGate . 75
6.2 OneGate Server Configuration . 75
6.3 Application Monitoring . 77

7 Public Cloud 83
7.1 Building a Public Cloud . 83
7.2 EC2 Server Configuration . 84
7.3 OpenNebula EC2 User Guide . 91
7.4 EC2 Ecosystem . 94

i

ii

CHAPTER

ONE

MULTI-VM APPLICATIONS AND AUTO-SCALING

1.1 OneFlow

OneFlow allows users and administrators to define, execute and manage multi-tiered applications, or services com-
posed of interconnected Virtual Machines with deployment dependencies between them. Each group of Virtual Ma-
chines is deployed and managed as a single entity, and is completely integrated with the advanced OpenNebula user
and group management.

1.1.1 Benefits

• Define multi-tiered applications (services) as collection of applications

• Manage multi-tiered applications as a single entity

• Automatic execution of services with dependencies

• Provide configurable services from a catalog and self-service portal

• Enable tight, efficient administrative control

• Fine-grained access control for the secure sharing of services with other users

• Auto-scaling policies based on performance metrics and schedule

1.1.2 Next Steps

• OneFlow Server Configuration

• Multi-tier Applications

• Application Auto-scaling

1.2 OneFlow Server Configuration

The OneFlow commands do not interact directly with the OpenNebula daemon, there is a server that takes the requests
and manages the service (multi-tiered application) life-cycle. This guide shows how to start OneFlow, and the different
options that can be configured.

1

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

1.2.1 Installation

Starting with OpenNebula 4.2, OneFlow is included in the default installation. Check the Installation guide for details
of what package you have to install depending on your distribution.

Make sure you execute ìnstall_gems to install the required gems, in particular: treetop, parse-cron.

1.2.2 Configuration

The OneFlow configuration file can be found at /etc/one/oneflow-server.conf. It uses YAML syntax to
define the following options:

Option Description
Server Configuration
:one_xmlrpc OpenNebula daemon host and port
:lcm_interval Time in seconds between Life Cycle Manager steps
:host Host where OneFlow will listen
:port Port where OneFlow will listen
Defaults
:default_cooldown Default cooldown period after a scale operation, in sec-

onds
:shutdown_action Default shutdown action. Values: ‘shutdown’,

‘shutdown-hard’
:action_number :action_period Default number of virtual machines (action_number)

that will receive the given call in each interval defined
by action_period, when an action is performed on a role.

:vm_name_template Default name for the Virtual Machines created by one-
flow. You can use any of the following placeholders:

• $SERVICE_ID
• $SERVICE_NAME
• $ROLE_NAME
• $VM_NUMBER

Auth
:core_auth Authentication driver to communicate with OpenNeb-

ula core cipher: for symmetric cipher encryption of
tokens x509: for x509 certificate encryption of tokens
For more information, visit the OpenNebula Cloud Auth
documentation

Log
:debug_level Log debug level. 0 = ERROR, 1 = WARNING, 2 =

INFO, 3 = DEBUG

This is the default file

##
Server Configuration
##

OpenNebula daemon contact information
#
:one_xmlrpc: http://localhost:2633/RPC2

Time in seconds between Life Cycle Manager steps
#
:lcm_interval: 30

2 Chapter 1. Multi-VM Applications and Auto-scaling

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

Host and port where OneFlow server will run
:host: 127.0.0.1
:port: 2474

##
Defaults
##

Default cooldown period after a scale operation, in seconds
:default_cooldown: 300

Default shutdown action. Values: 'shutdown', 'shutdown-hard'
:shutdown_action: 'shutdown'

Default oneflow action options when only one is supplied
:action_number: 1
:action_period: 60

Default name for the Virtual Machines created by oneflow. You can use any
of the following placeholders:
$SERVICE_ID
$SERVICE_NAME
$ROLE_NAME
$VM_NUMBER

:vm_name_template: '$ROLE_NAME_$VM_NUMBER_(service_$SERVICE_ID)'

###
Auth
###

Authentication driver to communicate with OpenNebula core
- cipher, for symmetric cipher encryption of tokens
- x509, for x509 certificate encryption of tokens
:core_auth: cipher

##
Log
##

Log debug level
0 = ERROR, 1 = WARNING, 2 = INFO, 3 = DEBUG
#
:debug_level: 2

1.2.3 Start OneFlow

To start and stop the server, use the oneflow-server start/stop command:

$ oneflow-server start
oneflow-server started

Warning: By default, the server will only listen to requests coming from localhost. Change the :host at-
tribute in /etc/one/oneflow-server.conf to your server public IP, or 0.0.0.0 so oneflow will listen on
any interface.

1.2. OneFlow Server Configuration 3

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

Inside /var/log/one/ you will find new log files for the server, and individual ones for each service in
/var/log/one/oneflow/<id>.log

/var/log/one/oneflow.error
/var/log/one/oneflow.log

1.2.4 Enable the Sunstone Tabs

The OneFlow tabs are enabled by default. To enable or disable them, edit
/etc/one/sunstone-views/admin.yaml and user.yaml and set oneflow tabs inside enabled_tabs
to true or false:

enabled_tabs:
dashboard-tab: true

...

oneflow-dashboard: true
oneflow-services: true
oneflow-templates: true

Be sure to restart Sunstone for the changes to take effect.

For more information on how to customize the views based on the user/group interacting with Sunstone check the
sunstone views guide

1.2.5 Advanced Setup

Permission to Create Services

By default, new groups are allowed to create Document resources. Documents are a special tool used by OneFlow to
store Service Templates and instances. When a new Group is created, you can decide if you want to allow or deny its
users to create OneFlow resources (Documents).

4 Chapter 1. Multi-VM Applications and Auto-scaling

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

1.3 Managing Multi-tier Applications

OneFlow allows users and administrators to define, execute and manage multi-tiered applications, or services com-
posed of interconnected Virtual Machines with deployment dependencies between them. Each group of Virtual Ma-
chines is deployed and managed as a single entity, and is completely integrated with the advanced OpenNebula user
and group management.

1.3.1 What Is a Service

The following diagram represents a multi-tier application. Each node represents a Role, and its cardinality (the number
of VMs that will be deployed). The arrows indicate the deployment dependencies: each Role’s VMs are deployed only
when all its parent’s VMs are running.

1.3. Managing Multi-tier Applications 5

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

This Service can be represented with the following JSON template:

{
"name": "my_service",
"deployment": "straight",
"ready_status_gate": true|false,
"roles": [
{

"name": "frontend",
"vm_template": 0

},
{

"name": "db_master",
"parents": [

"frontend"
],
"vm_template": 1

},
{

"name": "db_slave",
"parents": [

"frontend"
],
"cardinality": 3,
"vm_template": 2

},
{

6 Chapter 1. Multi-VM Applications and Auto-scaling

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

"name": "worker",
"parents": [

"db_master",
"db_slave"

],
"cardinality": 10,
"vm_template": 3

}
]

}

1.3.2 Managing Service Templates

OneFlow allows OpenNebula administrators and users to register Service Templates in OpenNebula, to be instantiated
later as Services. These Templates can be instantiated several times, and also shared with other users.

Users can manage the Service Templates using the command oneflow-template, or the graphical interface.
For each user, the actual list of Service Templates available is determined by the ownership and permissions of the
Templates.

Create and List Existing Service Templates

The command oneflow-template create registers a JSON template file. For example, if the previous example
template is saved in /tmp/my_service.json, you can execute:

$ oneflow-template create /tmp/my_service.json
ID: 0

You can also create service template from Sunstone:

1.3. Managing Multi-tier Applications 7

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

To list the available Service Templates, use oneflow-template list/show/top:

$ oneflow-template list
ID USER GROUP NAME
0 oneadmin oneadmin my_service

$ oneflow-template show 0
SERVICE TEMPLATE 0 INFORMATION
ID : 0
NAME : my_service
USER : oneadmin

8 Chapter 1. Multi-VM Applications and Auto-scaling

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

GROUP : oneadmin

PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---

TEMPLATE CONTENTS
{

"name": "my_service",
"roles": [
{

....

Templates can be deleted with oneflow-template delete.

Determining when a VM is READY

Depending on the deployment strategy, OneFlow will wait until all the VMs in a specific role are all in running
state before deploying VMs that belong to a child role. How OneFlow determines the running state of the VMs can
be specified with the checkbox Wait for VMs to report that the are READY available in the service
creation dialog in Sunstone, or the attribute in ready_status_gate in the top-level of the service JSON.

If ready_status_gate is set to true, a VM will only be considered to be in running state the following points
are true:

• VM is in running state for OpenNebula. Which specifically means that LCM_STATE==3 and STATE>=3

• The VM has READY=YES in the user template.

The idea is to report via OneGate from inside the VM that it’s running during the boot sequence:

curl -X "PUT" http://<onegate>/vm \
--header "X-ONEGATE-TOKEN: ..." \

1.3. Managing Multi-tier Applications 9

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

--header "X-ONEGATE-VMID: ..." \
-d "READY = YES"

This can also be done directly using OpenNebula’s interfaces: CLI, Sunstone or API.

If ready_status_gate is set to false, a VM will be considered to be in running state when it’s in running state
for OpenNebula (LCM_STATE==3 and STATE>=3). Take into account that the VM will be considered RUNNING
the very same moment the hypervisor boots the VM (before it loads the OS).

Configure Dynamic Networks

A Service Role has a Virtual Machine Template assigned. The VM Template will define the capacity, disks, and
network interfaces. But instead of using the Virtual Networks set in the VM Template, the Service Template can
define a set of dynamic networks.

Each Role can be attached to the dynamic networks individually.

10 Chapter 1. Multi-VM Applications and Auto-scaling

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

When a Service Template defines dynamic networks, the instantiate dialog will ask the user to select the networks to
use for the new Service.

1.3. Managing Multi-tier Applications 11

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

This allows you to create more generic Service Templates. For example, the same Service Template can be used by
users of different VDC’s that may have access to different Virtual Networks.

1.3.3 Managing Services

A Service Template can be instantiated as a Service. Each newly created Service will be deployed by OneFlow
following its deployment strategy.

Each Service Role creates Virtual Machines in OpenNebula from VM Templates, that must be created beforehand.

Create and List Existing Services

New Services are created from Service Templates, using the oneflow-template instantiate command:

12 Chapter 1. Multi-VM Applications and Auto-scaling

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

$ oneflow-template instantiate 0
ID: 1

To list the available Services, use oneflow list/top:

$ oneflow list
ID USER GROUP NAME STATE
1 oneadmin oneadmin my_service PENDING

The Service will eventually change to DEPLOYING. You can see information for each Role and individual Virtual
Machine using oneflow show

$ oneflow show 1
SERVICE 1 INFORMATION
ID : 1
NAME : my_service
USER : oneadmin
GROUP : oneadmin
STRATEGY : straight
SERVICE STATE : DEPLOYING

PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---

ROLE frontend
ROLE STATE : RUNNING
CARNIDALITY : 1
VM TEMPLATE : 0

1.3. Managing Multi-tier Applications 13

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

NODES INFORMATION
VM_ID NAME STAT UCPU UMEM HOST TIME

0 frontend_0_(service_1) runn 67 120.3M localhost 0d 00h01

ROLE db_master
ROLE STATE : DEPLOYING
PARENTS : frontend
CARNIDALITY : 1
VM TEMPLATE : 1
NODES INFORMATION
VM_ID NAME STAT UCPU UMEM HOST TIME

1 init 0K 0d 00h00

ROLE db_slave
ROLE STATE : DEPLOYING
PARENTS : frontend
CARNIDALITY : 3
VM TEMPLATE : 2
NODES INFORMATION
VM_ID NAME STAT UCPU UMEM HOST TIME

2 init 0K 0d 00h00
3 init 0K 0d 00h00
4 init 0K 0d 00h00

ROLE worker
ROLE STATE : PENDING
PARENTS : db_master, db_slave
CARNIDALITY : 10
VM TEMPLATE : 3
NODES INFORMATION
VM_ID NAME STAT UCPU UMEM HOST TIME

LOG MESSAGES
09/19/12 14:44 [I] New state: DEPLOYING

Life-cycle

The deployment attribute defines the deployment strategy that the Life Cycle Manager (part of the oneflow-server)
will use. These two values can be used:

• none: All roles are deployed at the same time.

• straight: Each Role is deployed when all its parent Roles are RUNNING.

Regardless of the strategy used, the Service will be RUNNING when all of the Roles are also RUNNING. Likewise, a
Role will enter this state only when all the VMs are running.

14 Chapter 1. Multi-VM Applications and Auto-scaling

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

This table describes the Service states:

Service State Meaning
PENDING The Service starts in this state, and will stay in it until the LCM decides to deploy it
DEPLOYING Some Roles are being deployed
RUNNING All Roles are deployed successfully
WARNING A VM was found in a failure state
SCALING A Role is scaling up or down
COOLDOWN A Role is in the cooldown period after a scaling operation
UNDEPLOYING Some Roles are being undeployed
DONE The Service will stay in this state after a successful undeployment. It can be deleted
FAILED_DEPLOYING An error occurred while deploying the Service
FAILED_UNDEPLOYING An error occurred while undeploying the Service
FAILED_SCALING An error occurred while scaling the Service

Each Role has an individual state, described in the following table:

1.3. Managing Multi-tier Applications 15

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

Role State Meaning
PENDING The Role is waiting to be deployed
DEPLOYING The VMs are being created, and will be monitored until all of them are running
RUNNING All the VMs are running
WARNING A VM was found in a failure state
SCALING The Role is waiting for VMs to be deployed or to be shutdown
COOLDOWN The Role is in the cooldown period after a scaling operation
UNDEPLOYING The VMs are being shutdown. The role will stay in this state until all VMs are done
DONE All the VMs are done
FAILED_DEPLOYING An error occurred while deploying the VMs
FAILED_UNDEPLOYING An error occurred while undeploying the VMs
FAILED_SCALING An error occurred while scaling the Role

Life-Cycle Operations

Services are deployed automatically by the Life Cycle Manager. To undeploy a running Service, users have the
commands oneflow shutdown and oneflow delete.

The command oneflow shutdown will perform a graceful shutdown of all the running VMs, and will delete any
VM in a failed state (see onevm shutdown and delete). If the straight deployment strategy is used, the Roles will
be shutdown in the reverse order of the deployment.

After a successful shutdown, the Service will remain in the DONE state. If any of the VM shutdown operations cannot
be performed, the Service state will show FAILED, to indicate that manual intervention is required to complete the
cleanup. In any case, the Service can be completely removed using the command oneflow delete.

If a Service and its VMs must be immediately undeployed, the command oneflow delete can be used from any
Service state. This will execute a delete operation for each VM and delete the Service. Please be aware that this is not
recommended, because VMs using persistent Images can leave them in an inconsistent state.

When a Service fails during a deployment, undeployment or scaling operation, the command oneflow recover
can be used to retry the previous action once the problem has been solved.

Elasticity

A role’s cardinality can be adjusted manually, based on metrics, or based on a schedule. To start the scalability
immediately, use the command oneflow scale:

$ oneflow scale <serviceid> <role_name> <cardinality>

To define automatic elasticity policies, proceed to the elasticity documentation guide.

Sharing Information between VMs

The Virtual Machines of a Service can share information with each other, using the OneGate server. OneGate allows
Virtual Machine guests to push information to OpenNebula, and pull information about their own VM or Service.

From any VM, use the PUT ${ONEGATE_ENDPOINT}/vm action to store any information in the VM user template.
This information will be in the form of attribute=vale, e.g. ACTIVE_TASK = 13. Other VMs in the Service can
request that information using the GET ${ONEGATE_ENDPOINT}/service action.

You can read more details in the OneGate API documentation.

16 Chapter 1. Multi-VM Applications and Auto-scaling

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

1.3.4 Managing Permissions

Both Services and Template resources are completely integrated with the OpenNebula user and group management.
This means that each resource has an owner and group, and permissions. The VMs created by a Service are owned by
the Service owner, so he can list and manage them.

For example, to change the owner and group of the Service 1, we can use oneflow chown/chgrp:

$ oneflow list
ID USER GROUP NAME STATE
1 oneadmin oneadmin my_service RUNNING

$ onevm list
ID USER GROUP NAME STAT UCPU UMEM HOST TIME
0 oneadmin oneadmin frontend_0_(ser runn 17 43.5M localhost 0d 01h06
1 oneadmin oneadmin db_master_0_(se runn 59 106.2M localhost 0d 01h06

...

$ oneflow chown my_service johndoe apptools

$ oneflow list
ID USER GROUP NAME STATE
1 johndoe apptools my_service RUNNING

$ onevm list
ID USER GROUP NAME STAT UCPU UMEM HOST TIME
0 johndoe apptools frontend_0_(ser runn 62 83.2M localhost 0d 01h16
1 johndoe apptools db_master_0_(se runn 74 115.2M localhost 0d 01h16

...

Note that the Service’s VM ownership is also changed.

All Services and Templates have associated permissions for the owner, the users in its group, and others. For each
one of these groups, there are three rights that can be set: USE, MANAGE and ADMIN. These permissions are very
similar to those of UNIX file system, and can be modified with the command chmod.

For example, to allow all users in the apptools group to USE (list, show) and MANAGE (shutdown, delete) the
Service 1:

$ oneflow show 1
SERVICE 1 INFORMATION
..

PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---
...

$ oneflow chmod my_service 660

$ oneflow show 1
SERVICE 1 INFORMATION
..

PERMISSIONS
OWNER : um-
GROUP : um-
OTHER : ---
...

1.3. Managing Multi-tier Applications 17

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

Another common scenario is having Service Templates created by oneadmin that can be instantiated by any user. To
implement this scenario, execute:

$ oneflow-template show 0
SERVICE TEMPLATE 0 INFORMATION
ID : 0
NAME : my_service
USER : oneadmin
GROUP : oneadmin

PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---
...

$ oneflow-template chmod 0 604

$ oneflow-template show 0
SERVICE TEMPLATE 0 INFORMATION
ID : 0
NAME : my_service
USER : oneadmin
GROUP : oneadmin

PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : u--
...

Please refer to the OpenNebula documentation for more information about users & groups, and resource permissions.

1.3.5 Scheduling Actions on the Virtual Machines of a Role

You can use the action command to perform a VM action on all the Virtual Machines belonging to a role. For
example, if you want to suspend the Virtual Machines of the worker Role:

$ oneflow action <service_id> <role_name> <vm_action>

These are the commands that can be performed:

• shutdown

• shutdown-hard

• undeploy

• undeploy-hard

• hold

• release

• stop

• suspend

• resume

• boot

18 Chapter 1. Multi-VM Applications and Auto-scaling

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

• delete

• delete-recreate

• reboot

• reboot-hard

• poweroff

• poweroff-hard

• snapshot-create

Instead of performing the action immediately on all the VMs, you can perform it on small groups of VMs with these
options:

• -p, -period x: Seconds between each group of actions

• -n, -number x: Number of VMs to apply the action to each period

Let’s say you need to reboot all the VMs of a Role, but you also need to avoid downtime. This command will reboot
2 VMs each 5 minutes:

$ oneflow action my-service my-role reboot --period 300 --number 2

The oneflow-server.conf file contains default values for period and number that are used if you omit one
of them.

1.3.6 Recovering from Failures

Some common failures can be resolved without manual intervention, calling the oneflow recover command.
This command has different effects depending on the Service state:

State New State Recover action
FAILED_DEPLOYING DEPLOYING

VMs in DONE or FAILED are deleted.
VMs in UNKNOWN are booted.

FAILED_UNDEPLOYING UNDEPLOYING The undeployment is resumed.
FAILED_SCALING SCALING

VMs in DONE or FAILED are deleted.
VMs in UNKNOWN are booted.
For a scale-down, the shut-
down actions are retried.

COOLDOWN RUNNING The Service is simply set to running
before the cooldown period is over.

WARNING WARNING
VMs in DONE or FAILED are deleted.

VMs in UNKNOWN are booted.
New VMs are instantiated to
maintain the current cardinal-
ity.

1.3.7 Service Template Reference

For more information on the resource representation, please check the API guide

1.3. Managing Multi-tier Applications 19

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

Read the elasticity policies documentation for more information.

1.4 Application Auto-scaling

A role’s cardinality can be adjusted manually, based on metrics, or based on a schedule.

1.4.1 Overview

When a scaling action starts, the Role and Service enter the SCALING state. In this state, the Role will instantiate
or shutdown a number of VMs to reach its new cardinality.

A role with elasticity policies must define a minimum and maximum number of VMs:

"roles": [
{

"name": "frontend",
"cardinality": 1,
"vm_template": 0,

"min_vms" : 1,
"max_vms" : 5,

...

After the scaling, the Role and Service are in the COOLDOWN state for the configured duration. During a scale operation
and the cooldown period, other scaling actions for the same or for other Roles are delayed until the Service is RUNNING
again.

20 Chapter 1. Multi-VM Applications and Auto-scaling

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

1.4.2 Set the Cardinality of a Role Manually

The command oneflow scale starts the scalability immediately.

$ oneflow scale <serviceid> <role_name> <cardinality>

You can force a cardinality outside the defined range with the --force option.

1.4. Application Auto-scaling 21

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

1.4.3 Maintain the Cardinality of a Role

The ‘min_vms’ attribute is a hard limit, enforced by the elasticity module. If the cardinality drops below this minimum,
a scale-up operation will be triggered.

1.4.4 Set the Cardinality of a Role Automatically

Auto-scaling Types

Both elasticity_policies and scheduled_policies elements define an automatic adjustment of the Role cardinality. Three
different adjustment types are supported:

• CHANGE: Add/substract the given number of VMs

• CARDINALITY: Set the cardinality to the given number

• PERCENTAGE_CHANGE: Add/substract the given percentage to the current cardinality

At-
tribute

Type Manda-
tory

Description

type string Yes Type of adjustment. Values: CHANGE, CARDINALITY, PERCENTAGE_CHANGE
adjust in-

te-
ger

Yes Positive or negative adjustment. Its meaning depends on ‘type’

min_adjust_stepin-
te-
ger

No Optional parameter for PERCENTAGE_CHANGE adjustment type. If present, the
policy will change the cardinality by at least the number of VMs set in this attribute.

Auto-scaling Based on Metrics

Each role can have an array of elasticity_policies. These policies define an expression that will trigger a
cardinality adjustment.

These expressions can use performance data from

• The VM guest. Using the OneGate server, applications can send custom monitoring metrics to OpenNebula.

• The VM, at hypervisor level. The Virtualization Drivers return information about the VM, such as CPU, MEM-
ORY, NET_TX and NET_RX.

"elasticity_policies" : [
{
"expression" : "ATT > 50",
"type" : "CHANGE",
"adjust" : 2,

"period_number" : 3,
"period" : 10

},
...

]

The expression can use VM attribute names, float numbers, and logical operators (!, &, |). When an attribute is found,
it will take the average value for all the running VMs that contain that attribute in the Role. If none of the VMs
contain the attribute, the expression will evaluate to false.

The attribute will be looked for in /VM/USER_TEMPLATE, /VM, and /VM/TEMPLATE, in that order. Logical
operators have the usual precedence.

22 Chapter 1. Multi-VM Applications and Auto-scaling

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

Attribute Type Manda-
tory

Description

expression string Yes Expression to trigger the elasticity
pe-
riod_number

inte-
ger

No Number of periods that the expression must be true before the elasticity is
triggered

period inte-
ger

No Duration, in seconds, of each period in period_number

Auto-scaling Based on a Schedule

Combined with the elasticity policies, each role can have an array of scheduled_policies. These policies define
a time, or a time recurrence, and a cardinality adjustment.

"scheduled_policies" : [
{
// Set cardinality to 2 each 10 minutes
"recurrence" : "*/10 * * * *",

"type" : "CARDINALITY",
"adjust" : 2

},
{
// +10 percent at the given date and time
"start_time" : "2nd oct 2013 15:45",

"type" : "PERCENTAGE_CHANGE",
"adjust" : 10

}
]

Attribute Type Mandatory Description
recurrence string No Time for recurring adjustements. Time is specified with the Unix cron sytax
start_time string No Exact time for the adjustement

1.4.5 Visualize in the CLI

The oneflow show / top commands show the defined policies. When a service is scaling, the VMs being
created or shutdown can be identified by an arrow next to their ID:

SERVICE 7 INFORMATION
...

ROLE frontend
ROLE STATE : SCALING
CARNIDALITY : 4
VM TEMPLATE : 0
NODES INFORMATION
VM_ID NAME STAT UCPU UMEM HOST TIME

4 frontend_0_(service_7) runn 0 74.2M host03 0d 00h04
5 frontend_1_(service_7) runn 0 112.6M host02 0d 00h04

| 6 init 0K 0d 00h00
| 7 init 0K 0d 00h00

ELASTICITY RULES
MIN VMS : 1
MAX VMS : 5

1.4. Application Auto-scaling 23

http://en.wikipedia.org/wiki/Cron

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

ADJUST EXPRESSION EVALUATION PERIOD
+ 2 (ATT > 50) && !(OTHER_ATT = 5.5 || ABC <= 30) 0 / 3 10s
- 10 % (2) ATT < 20 0 / 1 0s

ADJUST TIME
= 6 0 9 * * mon,tue,wed,thu,fri
= 10 0 13 * * mon,tue,wed,thu,fri
= 2 30 22 * * mon,tue,wed,thu,fri

LOG MESSAGES
06/10/13 18:22 [I] New state: DEPLOYING
06/10/13 18:22 [I] New state: RUNNING
06/10/13 18:26 [I] Role frontend scaling up from 2 to 4 nodes
06/10/13 18:26 [I] New state: SCALING

1.4.6 Interaction with Individual VM Management

All the VMs created by a Service can be managed as regular VMs. When VMs are monitored in an unexpected state,
this is what OneFlow interprets:

• VMs in a recoverable state (‘suspend’, ‘poweroff’, etc.) are considered are healthy machines. The user will
eventually decide to resume these VMs, so OneFlow will keep monitoring them. For the elasticity module,
these VMs are just like ‘running’ VMs.

• VMs in the final ‘done’ state are cleaned from the Role. They do not appear in the nodes information table, and
the cardinality is updated to reflect the new number of VMs. This can be seen as an manual scale-down action.

• VMs in ‘unknown’ or ‘failed’ are in an anomalous state, and the user must be notified. The Role and Service
are set to the ‘WARNING’ state.

24 Chapter 1. Multi-VM Applications and Auto-scaling

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

1.4.7 Examples

/*
Testing:

1) Update one VM template to contain
ATT = 40
and the other VM with
ATT = 60

Average will be 50, true evaluation periods will not increase in CLI output

2) Increase first VM ATT value to 45. True evaluations will increase each
10 seconds, the third time a new VM will be deployed.

3) True evaluations are reset. Since the new VM does not have ATT in its
template, the average will be still bigger than 50, and new VMs will be
deployed each 30s until the max of 5 is reached.

4) Update VM templates to trigger the scale down expression. The number of
VMs is adjusted -10 percent. Because 5 * 0.10 < 1, the adjustment is rounded to 1;
but the min_adjust_step is set to 2, so the final adjustment is -2 VMs.

*/
{

"name": "Scalability1",
"deployment": "none",
"roles": [

1.4. Application Auto-scaling 25

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

{
"name": "frontend",
"cardinality": 2,
"vm_template": 0,

"min_vms" : 1,
"max_vms" : 5,

"elasticity_policies" : [
{
// +2 VMs when the exp. is true for 3 times in a row,
// separated by 10 seconds
"expression" : "ATT > 50",

"type" : "CHANGE",
"adjust" : 2,

"period_number" : 3,
"period" : 10

},
{
// -10 percent VMs when the exp. is true.
// If 10 percent is less than 2, -2 VMs.
"expression" : "ATT < 20",

"type" : "PERCENTAGE_CHANGE",
"adjust" : -10,
"min_adjust_step" : 2

}
]

}
]

}

{
"name": "Time_windows",
"deployment": "none",
"roles": [
{

"name": "frontend",
"cardinality": 1,
"vm_template": 0,

"min_vms" : 1,
"max_vms" : 15,

// These policies set the cardinality to:
// 6 from 9:00 to 13:00
// 10 from 13:00 to 22:30
// 2 from 22:30 to 09:00, and the weekend

"scheduled_policies" : [
{
"type" : "CARDINALITY",
"recurrence" : "0 9 * * mon,tue,wed,thu,fri",
"adjust" : 6

},
{

26 Chapter 1. Multi-VM Applications and Auto-scaling

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

"type" : "CARDINALITY",
"recurrence" : "0 13 * * mon,tue,wed,thu,fri",
"adjust" : 10

},
{
"type" : "CARDINALITY",
"recurrence" : "30 22 * * mon,tue,wed,thu,fri",
"adjust" : 2

}
]

}
]

}

1.4. Application Auto-scaling 27

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

28 Chapter 1. Multi-VM Applications and Auto-scaling

CHAPTER

TWO

DATA CENTER FEDERATION

2.1 Data Center Federation

Several OpenNebula instances can be configured as a Federation. Each instance of the Federation is called a Zone,
and they are configured as one master and several slaves.

An OpenNebula Federation is a tightly coupled integration. All the instances will share the same user accounts, groups,
and permissions configuration. Of course, access can be restricted to certain Zones, and also to specific Clusters inside
that Zone.

The typical scenario for an OpenNebula Federation is a company with several Data Centers, distributed in different
geographic locations. This low-level integration does not rely on APIs, administrative employees of all Data Centers
will collaborate on the maintenance of the infrastructure. If your use case requires a synergy with an external cloud
infrastructure, that would fall into the cloudbursting scenario.

For the end users, a Federation allows them to use the resources allocated by the Federation Administrators no matter
where they are. The integration is seamless, meaning that a user logged into the Sunstone web interface of a Zone will
not have to log out and enter the address of the other Zone. Sunstone allows to change the active Zone at any time,
and it will automatically redirect the requests to the right OpenNebula at the target Zone.

2.1.1 Architecture

In a Federation, there is a master OpenNebula zone and several slaves sharing the database tables for users, groups,
ACL rules, and zones. The master OpenNebula is the only one that writes in the shared tables, while the slaves keep
a read-only local copy, and proxy any writing actions to the master. This allows us to guarantee data consistency,
without any impact on the speed of read-only actions.

The synchronization is achieved configuring MySQL to replicate certain tables only. MySQL’s replication is able to
perform over long-distance or unstable connections. Even if the master zone crashes and takes a long time to reboot,
the slaves will be able to continue working normally except for a few actions such as new user creation or password
updates.

New slaves can be added to an existing Federation at any moment. Moreover, the administrator can add a clean new
OpenNebula, or import an existing deployment into the Federation keeping the current users, groups, configuration,
and virtual resources.

Regarding the OpenNebula updates, we have designed the database in such a way that different OpenNebula versions
will be able to be part of the same Federation. While an upgrade of the local tables (VM, Image, VNet objects)
will be needed, new versions will keep compatibility with the shared tables. In practice, this means that when a new
OpenNebula version comes out each zone can be updated at a different pace, and the Federation will not be affected.

29

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

To enable users to change zones, Sunstone server is connected to all the oned daemons in the Federation. You can
have one Sunstone for all the Federation, or run one Sunstone for each Zone.

Regarding the administrator users, a Federation will have a unique oneadmin account. That is the Federation Adminis-
trator account. In a trusted environment, each Zone Administrator will log in with an account in the ‘oneadmin’ group.
In other scenarios, the Federation Administrator can create a special administrative group with total permissions for
one zone only.

The administrators can share appliances across Zones deploying a private OpenNebula Marketplace.

2.1.2 Other Services

Although a single Sunstone server can connect to different Zones, all the other OpenNebula services will only work
with the local Zone resources. This includes the Scheduler, the Public Cloud Servers, OneFlow, and OneGate.

2.1.3 Next Steps

Continue to the following guides to learn how to configure and manage a Federation:

• Federation Configuration

• Federation Management

2.2 OpenNebula Federation Configuration

This section will explain how to configure two (or more) OpenNebula zones to work as federation master and slave.
The process described here can be applied to new installations, or existing OpenNebula instances.

MySQL needs to be configured to enable the master-slave replication. Please read the MySQL documentation for
your version for complete instructions. The required steps are summarized here, but it may happen that your MySQL
version needs a different configuration.

Warning: If Sunstone is configured behind a proxy please make sure that the request headers are being properly
sent.

30 Chapter 2. Data Center Federation

http://dev.mysql.com/doc/refman/5.7/en/replication.html
http://dev.mysql.com/doc/refman/5.7/en/replication.html

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

2.2.1 1. Configure the OpenNebula Federation Master

• Start with an existing OpenNebula, or install OpenNebula as usual following the installation guide. For new
installations, you may need to create a MySQL user for OpenNebula, read more in the MySQL configuration
guide.

mysql -u root -p
mysql> GRANT ALL PRIVILEGES ON opennebula.* TO 'oneadmin' IDENTIFIED BY 'oneadmin';

• Configure OpenNebula to use the master MySQL, and to act as a federation master.

vi /etc/one/oned.conf
#DB = [backend = "sqlite"]

Sample configuration for MySQL
DB = [backend = "mysql",

server = "<ip>",
port = 0,
user = "oneadmin",
passwd = "oneadmin",
db_name = "opennebula"]

FEDERATION = [
MODE = "MASTER",
ZONE_ID = 0,
MASTER_ONED = ""

]

• Restart OpenNebula

• Edit the local (master) Zone Endpoint. This can be done via Sunstone, or with the onezone command.

$ onezone update 0
ENDPOINT = http://<master-ip>:2633/RPC2

• Create a Zone for each one of the slaves, and write down the new Zone ID. This can be done via Sunstone, or
with the onezone command.

$ vim /tmp/zone.tmpl
NAME = slave-name
ENDPOINT = http://<slave-ip>:2633/RPC2

$ onezone create /tmp/zone.tmpl
ID: 100

$ onezone list
ID NAME
0 OpenNebula

100 slave-name

• Stop OpenNebula.

2.2.2 2. Import the Existing Slave OpenNebula

Note: If your slave OpenNebula is going to be installed from scratch, you can skip this step.

If the OpenNebula to be added as a Slave is an existing installation, and you need to preserve its database (users,
groups, VMs, hosts...), you need to import the contents with the onedb command.

2.2. OpenNebula Federation Configuration 31

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

• Stop the slave OpenNebula. Make sure the master OpenNebula is also stopped.

• Run the onedb import-slave command. Use -h to get an explanation of each option.

$ onedb import-slave -h
USAGE
import-slave

Imports an existing federation slave into the federation master database

OPTIONS
...

$ onedb import-slave -v \
--username oneadmin --password oneadmin \
--server 192.168.122.3 --dbname opennebula \
--slave-username oneadmin --slave-password oneadmin \
--slave-server 192.168.122.4 --slave-dbname opennebula

The tool will ask for the Zone ID you created in step 1.

Please enter the Zone ID that you created to represent the new Slave OpenNebula:
Zone ID:

You will also need to decide if the users and groups will be merged.

If you had different people using the master and slave OpenNebula instances, then choose not to merge users. In case
of name collision, the slave account will be renamed to username-1.

You will want to merge if your users were accessing both the master and slave OpenNebula instances before the
federation. To put it more clearly, the same person had previous access to the alice user in master and alice user
in the slave. This will be the case if, for example, you had more than one OpenNebula instances pointing to the same
LDAP server for authentication.

When a user is merged, its user template is also copied, using the master contents in case of conflict. This means that
if alice had a different password or ‘SSH_KEY’ in her master and slave OpenNebula users, only the one in master will
be preserved.

In any case, the ownership of existing resources and group membership is preserved.

The import process will move the users from the slave OpeNenbula to the master
OpenNebula. In case of conflict, it can merge users with the same name.
For example:
+----------+-------------++------------+---------------+
| Master | Slave || With merge | Without merge |
+----------+-------------++------------+---------------+
5, alice	2, alice		5, alice	5, alice
6, bob	5, bob		6, bob	6, bob
				7, alice-1
				8, bob-1
+----------+-------------++------------+---------------+

In any case, the ownership of existing resources and group membership
is preserved.

Do you want to merge USERS (Y/N): y

Do you want to merge GROUPS (Y/N): y

When the import process finishes, onedb will write in /var/log/one/onedb-import.log the new user IDs
and names if they were renamed.

32 Chapter 2. Data Center Federation

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

2.2.3 3. Configure the MySQL Replication Master

• In your master MySQL: enable the binary log for the opennebula database and set a server ID. Change the
‘opennebula’ database name to the one set in oned.conf.

vi /etc/my.cnf
[mysqld]
log-bin = mysql-bin
server-id = 1
binlog-do-db = opennebula

service mysqld restart

• Master MySQL: You also need to create a special user that will be used by the MySQL replication slaves.

mysql -u root -p
mysql> CREATE USER 'one-slave'@'%' IDENTIFIED BY 'one-slave-pass';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'one-slave'@'%';

Warning: In the previous example we are granting access to user one-replication from any host. You may want
to restrict the hosts with the hostnames of the mysql slaves

• Master MySQL: Lock the tables and perform a dump.

First you need to lock the tables before dumping the federated tables.

mysql> FLUSH TABLES WITH READ LOCK;

Then you can safetly execute the mysqldump command in another terminal. Please note the --master-data
option, it must be present to allow the slaves to know the current position of the binary log.

mysqldump -u root -p --master-data opennebula user_pool group_pool zone_pool db_versioning acl > dump.sql

Once you get the dump you can unlock the DB tables again.

mysql> UNLOCK TABLES;

• MySQL replication cannot use Unix socket files. You must be able to connect from the slaves to the master
MySQL server using TCP/IP and port 3306 (default mysql port). Please update your firewall accordingly.

• You can start the master OpenNebula at this point.

2.2.4 4. Configure the MySQL Replication Slave

For each one of the slaves, configure the MySQL server as a replication slave. Pay attention to the server-id set in
my.cnf, it must be unique for each one.

• Set a server ID for the slave MySQL, and configure these tables to be replicated. You may need to change
‘opennebula’ to the database name used in oned.conf. The database name must be the same for the master and
slaves OpenNebulas.

vi /etc/my.cnf
[mysqld]
server-id = 100
replicate-do-table = opennebula.user_pool
replicate-do-table = opennebula.group_pool
replicate-do-table = opennebula.zone_pool
replicate-do-table = opennebula.db_versioning
replicate-do-table = opennebula.acl

2.2. OpenNebula Federation Configuration 33

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

service mysqld restart

• Set the master configuration on the slave MySQL.

mysql -u root -p
mysql> CHANGE MASTER TO

-> MASTER_HOST='master_host_name',
-> MASTER_USER='one-slave',
-> MASTER_PASSWORD='one-slave-pass';

• Copy the mysql dump file from the master, and import its contents to the slave.

mysql> CREATE DATABASE opennebula;
mysql> USE opennebula;
mysql> SOURCE /path/to/dump.sql;

• Start the slave MySQL process and check its status.

mysql> START SLAVE;
mysql> SHOW SLAVE STATUS\G

The SHOW SLAVE STATUS output will provide detailed information, but to confirm that the slave is connected to
the master MySQL, take a look at these columns:

Slave_IO_State: Waiting for master to send event
Slave_IO_Running: Yes

Slave_SQL_Running: Yes

2.2.5 5. Configure the OpenNebula Federation Slave

For each slave, follow these steps.

• If it is a new installation, install OpenNebula as usual following the installation guide.

• Configure OpenNebula to use MySQL, first you’ll need to create a database user for OpenNebula and grant
access to the OpenNebula database:

mysql -u root -p
mysql> GRANT ALL PRIVILEGES ON opennebula.* TO 'oneadmin' IDENTIFIED BY 'oneadmin';

and update oned.conf to use these values:

vi /etc/one/oned.conf
#DB = [backend = "sqlite"]

Sample configuration for MySQL
DB = [backend = "mysql",

server = "<ip>",
port = 0,
user = "oneadmin",
passwd = "oneadmin",
db_name = "opennebula"]

• Configure OpenNebula to act as a federation slave. Remember to use the ID obtained when the zone was
created.

FEDERATION = [
MODE = "SLAVE",
ZONE_ID = 100,

34 Chapter 2. Data Center Federation

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

MASTER_ONED = "http://<oned-master-ip>:2633/RPC2"
]

• Copy the directory /var/lib/one/.one from the master front-end to the slave. This directory and its
contents must have oneadmin as owner. The directory should contain these files:

$ ls -1 /var/lib/one/.one
ec2_auth
one_auth
oneflow_auth
onegate_auth
sunstone_auth

Make sure one_auth (the oneadmin credentials) is present. If it’s not, copy it from master onead-
min’s $HOME/.one to the slave oneadmin’s $HOME/.one. For most configurations, oneadmin’s home is
/var/lib/one and this won’t be necessary.

• Start the slave OpenNebula.

2.3 OpenNebula Federation Management

The administrator of a federation has the ability to add or remove Zones from the federation. See this guide for details
on how to configure the federation in both the master and the slave of the OpenNebula federation.

A user will have access to all the Zones where at least one of her groups has Resource Providers in. This access can
done through Sunstone or through the CLI

2.3.1 Adding a Zone

Adding a Zone through the CLI entails the creation of a Zone template.

Parameter Description
Name Name of the new Zone
Endpoint XMLRPC endpoint of the OpenNebula

vi zone.tmpl
NAME = ZoneB
ENDPOINT = http://zoneb.opennebula.front-end.server:2633/RPC2

This same operation can be performed through Sunstone (Zone tab -> Create).

Warning: The ENDPOINT has to be reachable from the Sunstone server machine, or the computer running the
CLI in order for the user to access the Zone.

2.3.2 Using a Zone

Through Sunstone

In the upper right position of Sunstone page, users will see a house icon next to the name of the Zone you are curently
using. If the user clicks on that, she will get a dropdown with all the Zones she has access to. Clicking on any of the
Zones in the dropdown will get the user to that Zone.

2.3. OpenNebula Federation Management 35

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

What’s happening behind the scenes is that the Sunstone server you are connecting to is redirecting its requests to the
OpenNebula oned process present in the other Zone. In the example above, if the uer clicks on ZoneB, Sunstone will
contact the OpenNebula listening at http://zoneb.opennebula.front-end.server:2633/RPC2.

Through CLI

Users can switch Zones through the command line using the onezone command. The following session can be exam-
ined to understand the Zone management through the CLI.

$ onezone list
C ID NAME ENDPOINT

* 0 OpenNebula http://localhost:2633/RPC2
104 ZoneB http://ultron.c12g.com:2634/RPC2

We can see in the above command output that the user has access to both “OpenNebula” and “ZoneB”, and it is
currently in the “OpenNebula” Zone. To change the active Zone can be changed using the ‘set’ command of onezone:

$ onezone set 104
Endpoint changed to "http://ultron.c12g.com:2634/RPC2" in /home/<username>/.one/one_endpoint

$ onezone list
C ID NAME ENDPOINT

0 OpenNebula http://localhost:2633/RPC2

* 104 ZoneB http://ultron.c12g.com:2634/RPC2

All the subsequent CLI commands executed would connect to the OpenNebula listening at
“http://zoneb.opennebula.front-end.server:2633/RPC2”.

36 Chapter 2. Data Center Federation

http://zoneb.opennebula.front-end.server:2633/RPC2

CHAPTER

THREE

SCALABILITY

3.1 Configuring Sunstone for Large Deployments

Low to medium enterprise clouds will typically deploy Sunstone in a single machine a long with the OpenNebula
daemons. However this simple deployment can be improved by:

• Isolating the access from Web clients to the Sunstone server. This can be achieved by deploying the Sunstone
server in a separated machine.

• Improve the scalability of the server for large user pools. Usually deploying sunstone in a separate application
container in one or more hosts.

Check also the api scalability guide as these of the tips also have an impact on Sunstone performance.

3.1.1 Deploying Sunstone in a Different Machine

By default the Sunstone server is configured to run in the frontend, but you are able to install the Sunstone server in a
machine different from the frontend.

• You will need to install only the sunstone server packages in the machine that will be running the server. If you
are installing from source use the -s option for the install.sh script.

• Make sure :one_xmlprc: variable in sunstone-server.conf points to the right place where Open-
Nebula frontend is running, You can also leave it undefined and export ONE_XMLRPC environment variable.

• Provide the serveradmin credentials in the following file /var/lib/one/.one/sunstone_auth. If you
changed the serveradmin password please check the Cloud Servers Authentication guide.

$ cat /var/lib/one/.one/sunstone_auth
serveradmin:1612b78a4843647a4b541346f678f9e1b43bbcf9

Using this setup the VirtualMachine logs will not be available. If you need to retrieve this information you must deploy
the server in the frontend

3.1.2 Running Sunstone Inside Another Webserver

Self contained deployment of Sunstone (using sunstone-server script) is ok for small to medium installations.
This is no longer true when the service has lots of concurrent users and the number of objects in the system is high
(for example, more than 2000 simultaneous virtual machines).

Sunstone server was modified to be able to run as a rack server. This makes it suitable to run in
any web server that supports this protocol. In ruby world this is the standard supported by most web
servers. We now can select web servers that support spawning multiple processes like unicorn or
embedding the service inside apache or nginx web servers using the Passenger module. Another

37

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

benefit will be the ability to run Sunstone in several servers and balance the load between them.

Warning: Deploying Sunstone behind a proxy in a federated environment requires some specific configuration to
properly handle the Sunstone headers required by the Federation.

• nginx: enable underscores_in_headers on; and proxy_pass_request_headers on;

Configuring memcached

When using one on these web servers the use of a memcached server is necessary. Sunstone needs to store user
sessions so it does not ask for user/password for every action. By default Sunstone is configured to use memory
sessions, that is, the sessions are stored in the process memory. Thin and webrick web servers do not spawn new
processes but new threads an all of them have access to that session pool. When using more than one process to server
Sunstone there must be a service that stores this information and can be accessed by all the processes. In this case we
will need to install memcached. It comes with most distributions and its default configuration should be ok. We will
also need to install ruby libraries to be able to access it. The rubygem library needed is memcache-client. If there
is no package for your distribution with this ruby library you can install it using rubygems:

$ sudo gem install memcache-client

Then you will have to change in sunstone configuration (/etc/one/sunstone-server.conf) the value of
:sessions to memcache.

If you want to use novcn you need to have it running. You can start this service with the command:

$ novnc-server start

Another thing you have to take into account is the user on which the server will run. The installation sets the permis-
sions for oneadmin user and group and files like the Sunstone configuration and credentials can not be read by other
users. Apache usually runs as www-data user and group so to let the server run as this user the group of these files
must be changed, for example:

$ chgrp www-data /etc/one/sunstone-server.conf
$ chgrp www-data /etc/one/sunstone-plugins.yaml
$ chgrp www-data /var/lib/one/.one/sunstone_auth
$ chmod a+x /var/lib/one
$ chmod a+x /var/lib/one/.one
$ chgrp www-data /var/log/one/sunstone*
$ chmod g+w /var/log/one/sunstone*

We advise to use Passenger in your installation but we will show you how to run Sunstone inside unicorn web server
as an example.

For more information on web servers that support rack and more information about it you can check the rack docu-
mentation page. You can alternatively check a list of ruby web servers.

Running Sunstone with Unicorn

To get more information about this web server you can go to its web page. It is a multi process web server that spawns
new processes to deal with requests.

The installation is done using rubygems (or with your package manager if it is available):

$ sudo gem install unicorn

In the directory where Sunstone files reside (/usr/lib/one/sunstone or
/usr/share/opennebula/sunstone) there is a file called config.ru. This file is specific for rack

38 Chapter 3. Scalability

http://rack.rubyforge.org/doc/
http://rack.rubyforge.org/doc/
https://www.ruby-toolbox.com/categories/web_servers
http://unicorn.bogomips.org/

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

applications and tells how to fun the application. To start a new server using unicorn you can run this command
from that directory:

$ unicorn -p 9869

Default unicorn configuration should be ok for most installations but a configuration file can be created to tune it. For
example, to tell unicorn to spawn 4 processes and write stderr to /tmp/unicorn.log we can create a file called
unicorn.conf that contains:

worker_processes 4
logger debug
stderr_path '/tmp/unicorn.log'

and start the server and daemonize it using:

$ unicorn -d -p 9869 -c unicorn.conf

You can find more information about the configuration options in the unicorn documentation.

Running Sunstone with Passenger in Apache

Phusion Passenger is a module for Apache and Nginx web servers that runs ruby rack applications. This can be used
to run Sunstone server and will manage all its life cycle. If you are already using one of these servers or just feel
comfortable with one of them we encourage you to use this method. This kind of deployment adds better concurrency
and lets us add an https endpoint.

We will provide the instructions for Apache web server but the steps will be similar for nginx following Passenger
documentation.

First thing you have to do is install Phusion Passenger. For this you can use pre-made packages for your distribution
or follow the installation instructions from their web page. The installation is self explanatory and will guide you in
all the process, follow them an you will be ready to run Sunstone.

Next thing we have to do is configure the virtual host that will run our Sunstone server. We have to point to the
public directory from the Sunstone installation, here is an example:

<VirtualHost *:80>
ServerName sunstone-server
PassengerUser oneadmin
!!! Be sure to point DocumentRoot to 'public'!
DocumentRoot /usr/lib/one/sunstone/public
<Directory /usr/lib/one/sunstone/public>

This relaxes Apache security settings.
AllowOverride all
MultiViews must be turned off.
Options -MultiViews

</Directory>
</VirtualHost>

Note: When you’re experiencing login problems you might want to set PassengerMaxInstancesPerApp 1
in your passenger configuration or try memcached since Sunstone does not support sessions across multiple server
instances.

Now the configuration should be ready, restart -or reload apache configuration- to start the application and point to the
virtual host to check if everything is running.

3.1. Configuring Sunstone for Large Deployments 39

http://unicorn.bogomips.org/Unicorn/Configurator.html
https://www.phusionpassenger.com/
http://httpd.apache.org/
http://nginx.org/en/
https://www.phusionpassenger.com/support#documentation
https://www.phusionpassenger.com/support#documentation
https://www.phusionpassenger.com/download/#open_source

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

Running Sunstone in Multiple Servers

You can run Sunstone in several servers and use a load balancer that connects to them. Make sure you are using
memcache for sessions and both Sunstone servers connect to the same memcached server. To do this change the
parameter :memcache_host in the configuration file. Also make sure that both Sunstone instances connect to the
same OpenNebula server.

3.2 Configuring OpenNebula for Large Deployments

3.2.1 Monitoring

OpenNebula supports two native monitoring systems: ssh-pull and udp-push. The former one, ssh-pull is
the default monitoring system for OpenNebula <= 4.2, however from OpenNebula 4.4 onwards, the default monitoring
system is the udp-push system. This model is highly scalable and its limit (in terms of number of VMs monitored
per second) is bounded to the performance of the server running oned and the database server. Our scalability testing
achieves the monitoring of tens of thousands of VMs in a few minutes.

Read more in the Monitoring guide.

3.2.2 Core Tuning

OpenNebula keeps the monitorization history for a defined time in a database table. These values are then used to
draw the plots in Sunstone.

These monitorization entries can take quite a bit of storage in your database. The amount of storage used will depend
on the size of your cloud, and the following configuration attributes in oned.conf:

• MONITORING_INTERVAL (VMware only): Time in seconds between each monitorization. Default: 60.

• collectd IM_MAD -i argument (KVM & Xen only): Time in seconds of the monitorization push cycle. Default:
20.

• HOST_MONITORING_EXPIRATION_TIME: Time, in seconds, to expire monitoring information. Default:
12h.

• VM_MONITORING_EXPIRATION_TIME: Time, in seconds, to expire monitoring information. Default: 4h.

If you don’t use Sunstone, you may want to disable the monitoring history, setting both expiration times to 0.

Each monitoring entry will be around 2 KB for each Host, and 4 KB for each VM. To give you an idea of how much
database storage you will need to prepare, these some examples:

Monitoring interval Host expiration # Hosts Storage
20s 12h 200 850 MB
20s 24h 1000 8.2 GB

Monitoring interval VM expiration # VMs Storage
20s 4h 2000 1.8 GB
20s 24h 10000 7 GB

3.2.3 API Tuning

For large deployments with lots of xmlprc calls the default values for the xmlprc server are too conservative. The
values you can modify and its meaning are explained in the oned.conf guide and the xmlrpc-c library documentation.
From our experience these values improve the server behaviour with a high amount of client calls:

40 Chapter 3. Scalability

http://xmlrpc-c.sourceforge.net/doc/libxmlrpc_server_abyss.html#max_conn

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

MAX_CONN = 240
MAX_CONN_BACKLOG = 480

OpenNebula Cloud API (OCA) is able to use the library Ox for XML parsing. This library is makes the parsing of
pools much faster. It is used by both the CLI and Sunstone so both will benefit from it.

The core is able to paginate some pool answers. This makes the memory consumption decrease and in some cases
the parsing faster. By default the pagination value is 2000 objects but can be changed using the environment variable
ONE_POOL_PAGE_SIZE. It should be bigger that 2. For example, to list VMs with a page size of 5000 we can use:

$ ONE_POOL_PAGE_SIZE=5000 onevm list

To disable pagination we can use a non numeric value:

$ ONE_POOL_PAGE_SIZE=disabled onevm list

This environment variable can be also used for Sunstone.

3.2.4 Driver Tuning

OpenNebula drivers have by default 15 threads. This is the maximum number of actions a driver can perform at the
same time, the next actions will be queued. You can make this value in oned.conf, the driver parameter is -t.

3.2.5 Database Tuning

For non test installations use MySQL database. sqlite is too slow for more than a couple hosts and a few VMs.

3.2.6 Sunstone Tuning

Please refer to guide about Configuring Sunstone for Large Deployments.

3.2. Configuring OpenNebula for Large Deployments 41

https://rubygems.org/gems/ox

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

42 Chapter 3. Scalability

CHAPTER

FOUR

HIGH AVAILABILITY

4.1 Virtual Machines High Availability

OpenNebula delivers the availability required by most applications running in virtual machines. This guide’s objective
is to provide information in order to prepare for failures in the virtual machines or physical nodes, and recover from
them. These failures are categorized depending on whether they come from the physical infrastructure (Host failures)
or from the virtualized infrastructure (VM crashes). In both scenarios, OpenNebula provides a cost-effective failover
solution to minimize downtime from server and OS failures.

If you are interested in setting up a high available cluster for OpenNebula, check the High OpenNebula Availability
Guide.

4.1.1 Host Failures

When OpenNebula detects that a host is down, a hook can be triggered to deal with the situation. OpenNebula comes
with a script out-of-the-box that can act as a hook to be triggered when a host enters the ERROR state. This can very
useful to limit the downtime of a service due to a hardware failure, since it can redeploy the VMs on another host.

Let’s see how to configure /etc/one/oned.conf to set up this Host hook, to be triggered in the ERROR state.
The following should be uncommented in the mentioned configuration file:

#---
HOST_HOOK = [

name = "error",
on = "ERROR",
command = "host_error.rb",
arguments = "$HID -r",
remote = no]

#---

We are defining a host hook, named error, that will execute the script ‘host_error.rb’ locally with the following
arguments:

43

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

Argu-
ment

Description

Host ID ID of the host containing the VMs to treat. It is compulsory and better left to $HID, that will be
automatically filled by OpenNebula with the Host ID of the host that went down.

Action This defined the action to be performed upon the VMs that were running in the host that went down.
This can be -r (recreate) or -d (delete).

Force-
Sus-
pended

[-f] force resubmission of suspended VMs

Avoid-
Transient

[-p <n>] avoid resubmission if host comes back after <n> monitoring cycles

More information on hooks here.

Additionally, there is a corner case that in critical production environments should be taken into account. OpenNebula
also has become tolerant to network errors (up to a limit). This means that a spurious network error won’t trigger the
hook. But if this network error stretches in time, the hook may be triggered and the VMs deleted and recreated. When
(and if) the network comes back, there will be a potential clash between the old and the reincarnated VMs. In order to
prevent this, a script can be placed in the cron of every host, that will detect the network error and shutdown the host
completely (or delete the VMs).

4.1.2 Virtual Machine Failures

The Virtual Machine lifecycle management can fail in several points. The following two cases should cover them:

• VM fails: This may be due to a network error that prevents the image to be staged into the node, a hypervisor
related issue, a migration problem, etc. The common symptom is that the VM enters the FAILED state. In
order to deal with these errors, a Virtual Machine hook can be set to recreate the failed VM (or, depending
the production scenario, delete it). This can be achieved by uncommenting the following (for recreating, the
deletion hook is also present in the same file) in /etc/one/oned.conf (and restarting oned):

#---
VM_HOOK = [

name = "on_failure_recreate",
on = "FAILED",
command = "/usr/bin/env onevm delete --recreate",
arguments = "$ID"]

#---

• VM crash: This point is concerned with crashes that can happen to a VM after it has been successfully booted
(note that here boot doesn’t refer to the actual VM boot process, but to the OpenNebula boot process, that
comprises staging and hypervisor deployment). OpenNebula is able to detect such crashes, and report it as the
VM being in an UNKNOWN state. This failure can be recovered from using the onevm boot functionality.

4.2 OpenNebula High Availability

This guide walks you through the process of setting a high available cluster for OpenNebula. The ultimate goal is to
reduce downtime of core OpenNebula services: core (oned), scheduler (mm_sched) and Sunstone interface (sunstone-
server).

We will be using the classical active-passive cluster architecture which is the recommended solution for OpenNebula.
In this solution two (or more) nodes will be part of a cluster where the OpenNebula daemon, scheduler and Sunstone
(web UI) are cluster resources. When the active node fails, the passive one takes control.

44 Chapter 4. High Availability

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

If you are interested in failover protection against hardware and operating system outages within your virtualized IT
environment, check the Virtual Machines High Availability Guide.

This guide is structured in a how-to form using the Red Hat HA Cluster suite tested in a CentOS installation; but generic
considerations and requirements for this setup are discussed to easily implement this solution with other systems.

4.2.1 Overview

In terms of high-availability, OpenNebula consists in three different basic services, namely:

• OpenNebula Core: It is the main orchestration component, supervises the life-cycle of each resources (e.g.
hosts, VMs or networks) and operates on the physical infrastructure to deploy and manage virtualized resources.

• Scheduler: The scheduler performs a matching between the virtual requests and the available resources using
different scheduling policies. It basically assigns a physical host, and a storage area to each VM.

• Sunstone: The GUI for advanced and cloud users as well as system administrators. The GUI is accessed through
a well-known end-point (IP/URL). Sunstone has been architected as a scalable web application supporting
multiple application servers or processes.

The state of the system is stored in a database for persistency and managed by OpenNebula core. In order to improve
the response time of the core daemon, it caches the most recently used data so it reduces the number of queries to the
DB. Note that this prevents an active-active HA configuration for OpenNebula. However such a configuration, given
the lightweight and negligible start times of the core services, does not suppose any advantage.

In this guide we assume that the DB backing OpenNebula core state is also configured in a HA mode. The procedure
for MySQL is well documented elsewhere. Although Sqlite could also be used it is not recommended for a HA
deployment.

4.2. OpenNebula High Availability 45

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

4.2.2 HA Cluster Components & Services

As shown in the previous figure, we will use just one fail-over domain (blue) with two hosts. All OpenNebula services
will be collocated and run on the same server in this case. You can however easily modify this configuration to split
them and allocate each service to a different host and define different fail-over domains for each one (e.g. blue for
oned and scheduler, red for sunstone).

The following components will be installed and configured based on the RedHat Cluster suite:

* Cluster management, CMAN (cluster manager) and corosync. These components manage cluster membership and
quorum. It prevents service corruption in a distributed setting because of a split-brain condition (e.g. two opennebulas
updating the DB).

* Cluster configuration system, CCS. It keeps and synchronizes the cluster configuration information. There are
other windows-based configuration systems.

* Service Management, rgmanager. This module checks service status and start/stop them as needed in case of
failure.

* Fencing, in order to prevent OpenNebula DB corruption it is important to configure a suitable fencing mechanism.

4.2.3 Installation and Configuration

In the following, we assume that the cluster consists on two servers:

• one-server1

• one-server2

Warning: While setting and testing the installation it is recommended to disable any firewall. Also watch out for
se_linux.

Step 1: OpenNebula

You should have two servers (they may be VMs, as discussed below) ready to install OpenNebula. These servers will
have the same requirements as regular OpenNebula front-end (e.g. network connection to hosts, ssh passwordless
access, shared filesystems if required...). Remember to use a HA MySQL backend.

It is important to use a twin installation (i.e. same configuration files) so probably it is better to start and configure a
server, and once it is tested rsync the configuration to the other one.

Step 2: Install Cluster Software

In all the cluster servers install the cluster components:

yum install ricci
passwd ricci

Warning: Set the same password for user ricci in all the servers

yum install cman rgmanager
yum install ccs

Finally enable the daemons and start ricci.

46 Chapter 4. High Availability

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

chkconfig ricci on
chkconfig cman rgmanager on
chkconfig rgmanager on
service ricci start

Step 3: Create the Cluster and Failover Domain

Cluster configuration is stored in /etc/cluster/cluster.conf file. You can either edit this file directly or use
the ccs tool. It is important, however to synchronize and activate the configurtion on all nodes after a change.

To define the cluster using ccs:

ccs -h one-server1 --createcluster opennebula
ccs -h one-server1 --setcman two_node=1 expected_votes=1
ccs -h one-server1 --addnode one-server1
ccs -h one-server1 --addnode one-server2
ccs -h one-server1 --startall

Warning: You can use the -p option in the previous commands with the password set for user ricci.

Now you should have a cluster with two nodes, note the specific quorum options for cman, running. Let’s create one
failover domain for OpenNebula services consisting of both servers:

ccs -h one-server1 --addfailoverdomain opennebula ordered
ccs -h one-server1 --addfailoverdomainnode opennebula one-server1 1
ccs -h one-server1 --addfailoverdomainnode opennebula one-server2 2
ccs -h one-server1 --sync --activate

Step 4: Define the OpenNebula Service

As pointed out previously we’ll use just one fail-over domain with all the OpenNebula services co-allocated in the
same server. You can easily split the services in different servers and failover domains if needed (e.g. for security
reasons you want Sunstone in other server).

First create the resources of the service: A IP address to reach Sunstone, the one init.d script (it starts oned and
scheduler) and the sunstone init.d script

ccs --addresource ip address=10.10.11.12 sleeptime=10 monitor_link=1
ccs --addresource script name=opennebula file=/etc/init.d/opennebula
ccs --addresource script name=sunstone file=/etc/init.d/opennebula-sunstone

Finally compose the service with these resources and start it:

ccs --addservice opennebula domain=opennebula recovery=restart autostart=1
ccs --addsubservice opennebula ip ref=10.10.11.12
ccs --addsubservice opennebula script ref=opennebula
ccs --addsubservice opennebula script ref=sunstone
ccs -h one-server1 --sync --activate

As a reference the /etc/cluster/cluster.conf should look like:

<?xml version="1.0"?>
<cluster config_version="17" name="opennebula">

<fence_daemon/>
<clusternodes>
<clusternode name="one-server1" nodeid="1"/>

4.2. OpenNebula High Availability 47

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

<clusternode name="one-server2" nodeid="2"/>
</clusternodes>
<cman expected_votes="1" two_node="1"/>
<fencedevices/>
<rm>
<failoverdomains>

<failoverdomain name="opennebula" nofailback="0" ordered="1" restricted="0">
<failoverdomainnode name="one-server1" priority="1"/>
<failoverdomainnode name="one-server2" priority="2"/>

</failoverdomain>
</failoverdomains>
<resources>

<ip address="10.10.11.12" sleeptime="10"/>
<script file="/etc/init.d/opennebula" name="opennebula"/>
<script file="/etc/init.d/opennebula-sunstone" name="sunstone"/>

</resources>
<service domain="opennebula" name="opennebula" recovery="restart">

<ip ref="10.10.11.12"/>
<script ref="opennebula"/>
<script ref="sunstone"/>

</service>
</rm>

</cluster>

4.2.4 Fencing and Virtual Clusters

Fencing is an essential component when setting up a HA cluster. You should install and test a proper fencing device
before moving to production. In this section we show how to setup a special fencing device for virtual machines.

OpenNebula can be (and it is usually) installed in a virtual machine. Therefore the previous one-server1 and one-
server2 can be in fact virtual machines running in the same physical host (you can run them in different hosts, requiring
a different fencing plugin).

In this case, a virtual HA cluster running in the same host, you could control misbehaving VMs and restart OpenNebula
in other virtual server. However, if you need a to control also host failures you need to fencing mechanism for the
physical host (typically based on power).

Let’s assume then that one-server1 and one-server2 are VMs using KVM and libvirt, and running on a physical server.

Step 1: Configuration of the Physical Server

Install the fence agents:

yum install fence-virt fence-virtd fence-virtd-multicast fence-virtd-libvirt

Now we need to generate a random key, for the virtual servers to communicate with the dencing agent in the physical
server. You can use any convinient method, for example: generate key ro access xvm

mkdir /etc/cluster
date +%s | sha256sum | base64 | head -c 32 > /etc/cluster/fence_xvm.key
chmod 400 /etc/cluster/fence_xvm.key

Finally configure the fence-virtd agent

fence-virtd -c

The configuration file should be similar to:

48 Chapter 4. High Availability

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

=== Begin Configuration ===
backends {

libvirt {
uri = "qemu:///system";

}

}

listeners {
multicast {
interface = "eth0";
port = "1229";
family = "ipv4";
address = "225.0.0.12";
key_file = "/etc/cluster/fence_xvm.key";

}

}

fence_virtd {
module_path = "/usr/lib64/fence-virt";
backend = "libvirt";
listener = "multicast";

}

=== End Configuration ===

Warning: Interface (eth0 in the example) is the interface used to communicate the virtual and physical servers.

Now you can start and test the fencing agent:

chkconfig fence_virtd on
service fence_virtd start
fence_xvm -o list

Step 2: Configuration of the Virtual Servers

You need to copy the key to each virtual server:

scp /etc/cluster/fence_xvm.key one-server1:/etc/cluster/
scp /etc/cluster/fence_xvm.key one-server2:/etc/cluster/

Now you should be able to test the fencing agent in the virtual nodes:

fence_xvm -o list

Step 3: Configure the Cluster to Use Fencing

Finally we need to add the fencing device to the cluster:

ccs --addfencedev libvirt-kvm agent=fence_xvm key_file="/etc/cluster/fence_xvm.key" multicast_address="225.0.0.12" ipport="1229"

And let the servers use it:

4.2. OpenNebula High Availability 49

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

ccs --addmethod libvirt-kvm one-server1
ccs --addmethod libvirt-kvm one-server2
ccs --addfenceinst libvirt-kvm one-server1 libvirt-kvm port=one1
ccs --addfenceinst libvirt-kvm one-server2 libvirt-kvm port=one2

Finally synchronize and activate the configuration:

ccs -h one-server1 --sync --activate

4.2.5 What to Do After a Fail-over Event

When the active node fails and the passive one takes control, it will start OpenNebula again. This OpenNebula will
see the resources in the exact same way as the one in the server that crashed. However, there will be a set of Virtual
Machines which will be stuck in transient states. For example when a Virtual Machine is deployed and it starts copying
the disks to the target hosts it enters one of this transient states (in this case ‘PROLOG’). OpenNebula will wait for
the storage driver to return the ‘PROLOG’ exit status. This will never happen since the driver fails during the crash,
therefore the Virtual Machine will get stuck in the state.

In these cases it’s important to review the states of all the Virtual Machines and let OpenNebula know if the driver
exited succesfully or not. There is a command specific for this: onevm recover. You can read more about this
command in the Managing Virtual Machines guide.

In our example we would need to manually check if the disk files have been properly deployed to our host and execute:

$ onevm recover <id> --success # or --failure

The transient states to watch out for are:

• BOOT

• CLEAN

• EPILOG

• FAIL

• HOTPLUG

• MIGRARTE

• PROLOG

• SAVE

• SHUTDOWN

• SNAPSHOT

• UNKNOWN

50 Chapter 4. High Availability

CHAPTER

FIVE

CLOUD BURSTING

5.1 Cloud Bursting

Cloud bursting is a model in which the local resources of a Private Cloud are combined with resources from remote
Cloud providers. The remote provider could be a commercial Cloud service, such as Amazon EC2, IBM SoftLayer or
Microsoft Azure, or a partner infrastructure running a different OpenNebula instance. Such support for cloud bursting
enables highly scalable hosting environments.

As you may know, OpenNebula’s approach to cloud bursting is quite unique. The reason behind this uniqueness is
the transparency to both end users and cloud administrators to use and maintain the cloud bursting functionality. The
transparency to cloud administrators comes from the fact that a AWS EC2 region, SoftLayer datacenter or an Azure
location is modelled as any other host (albeit of potentially a much bigger capacity), so the scheduler can place VMs
in the external cloud as it will do in any other local host. For instance, in EC2:

$ onehost list
ID NAME CLUSTER RVM ALLOCATED_CPU ALLOCATED_MEM STAT
2 kvm- - 0 0 / 800 (0%) 0K / 16G (0%) on
3 kvm-1 - 0 0 / 100 (0%) 0K / 1.8G (0%) on
4 us-east-1 ec2 0 0 / 500 (0%) 0K / 8.5G (0%) on

On the other hand, the transparency to end users is offered through the hybrid template functionality: the same VM
template in OpenNebula can describe the VM if it is deployed locally and also if it gets deployed in EC2, SoftLayer
or Azure. So users just have to instantiate the template, and OpenNebula will transparently choose if that is executed
locally or remotely. A simple template like the following is enough to launch Virtual Machines in EC2:

NAME=ec2template
CPU=1
MEMORY=1700

EC2=[
AMI="ami-6f5f1206",
BLOCKDEVICEMAPPING="/dev/sdh=:20",

51

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

INSTANCETYPE="m1.small",
KEYPAIR="gsg-keypair"]

SCHED_REQUIREMENTS="PUBLIC_CLOUD=YES"

$ onetemplate create ec2template.one
ID: 112
$ onetemplate instantiate 112
VM ID: 234

For more information on how to configure an Amazon EC2 host see the following guide:

• Amazon EC2 driver

For more information on how to configure a SoftLayer host see the following guide:

• SoftLayer driver

For more information on how to configure an Azure host see the following guide:

• Azure driver

5.2 Amazon EC2 Driver

5.2.1 Considerations & Limitations

You should take into account the following technical considerations when using the EC2 cloud with OpenNebula:

• There is no direct access to the dom0, so it cannot be monitored (we don’t know where the VM is running on
the EC2 cloud).

• The usual OpenNebula functionality for snapshotting, hot-plugging, or migration is not available with EC2.

• By default OpenNebula will always launch m1.small instances, unless otherwise specified.

Please refer to the EC2 documentation to obtain more information about Amazon instance types and image manage-
ment:

• General information of instances

5.2.2 Prerequisites

• You must have a working account for AWS and signup for EC2 and S3 services.

5.2.3 OpenNebula Configuration

Uncomment the EC2 IM and VMM drivers from /etc/one/oned.conf file in order to use the driver.

IM_MAD = [
name = "ec2",
executable = "one_im_sh",
arguments = "-c -t 1 -r 0 ec2"]

VM_MAD = [
name = "ec2",
executable = "one_vmm_sh",

52 Chapter 5. Cloud Bursting

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

arguments = "-t 15 -r 0 ec2",
type = "xml"]

Driver flags are the same as other drivers:

FLAG SETs
-t Number of threads
-r Number of retries

Additionally you must define the AWS credentials and AWS region to be used and the maximum capacity that you
want OpenNebula to deploy on the EC2, for this edit the file /etc/one/ec2_driver.conf:

regions:
default:

region_name: us-east-1
access_key_id: YOUR_ACCESS_KEY
secret_access_key: YOUR_SECRET_ACCESS_KEY
capacity:

m1.small: 5
m1.large: 0
m1.xlarge: 0

You can define an http proxy if the OpenNebula Frontend does not have access to the internet, in
/etc/one/ec2_driver.conf:

proxy_uri: http://...

After OpenNebula is restarted, create a new Host that uses the ec2 drivers:

$ onehost create ec2 --im ec2 --vm ec2 --net dummy

5.2.4 EC2 Specific Template Attributes

In order to deploy an instance in EC2 through OpenNebula you must include an EC2 section in the virtual machine
template. This is an example of a virtual machine template that can be deployed in our local resources or in EC2.

CPU = 0.5
MEMORY = 128

Xen or KVM template machine, this will be use when submitting this VM to local resources
DISK = [IMAGE_ID = 3]
NIC = [NETWORK_ID = 7]

EC2 template machine, this will be use wen submitting this VM to EC2
EC2 = [AMI="ami-00bafcb5",

KEYPAIR="gsg-keypair",
INSTANCETYPE=m1.small]

#Add this if you want to use only EC2 cloud
#SCHED_REQUIREMENTS = 'HOSTNAME = "ec2"'

These are the attributes that can be used in the EC2 section of the template:

5.2. Amazon EC2 Driver 53

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

ATTRIBUTES DESCRIPTION
AMI Unique ID of a machine image, returned by a call to ec2-describe-images.
AKI The ID of the kernel with which to launch the instance.
CLIENTTOKEN Unique, case-sensitive identifier you provide to ensure idempotency of the request.
INSTANCETYPE Specifies the instance type.
KEYPAIR The name of the key pair, later will be used to execute commands like ssh -i id_keypair or scp -i

id_keypair
LICENSEPOOL –license-pool
BLOCKDEVICEMAPPINGThe block device mapping for the instance. More than one can be specified in a space-separated

list. Check the –block-device-mapping option of the EC2 CLI Reference for the syntax
PLACEMENTGROUPName of the placement group.
PRIVATEIP If you’re using Amazon Virtual Private Cloud, you can optionally use this parameter to assign

the instance a specific available IP address from the subnet.
RAMDISK The ID of the RAM disk to select.
SUBNETID If you’re using Amazon Virtual Private Cloud, this specifies the ID of the subnet you want to

launch the instance into. This parameter is also passed to the command ec2-associate-address -i
i-0041230 -a elasticip.

TENANCY The tenancy of the instance you want to launch.
USERDATA Specifies Base64-encoded MIME user data to be made available to the instance(s) in this

reservation.
SECURITYGROUPSName of the security group. You can specify more than one security group (comma separated).
ELASTICIP EC2 Elastic IP address to assign to the instance. This parameter is passed to the command

ec2-associate-address -i i-0041230 elasticip.
TAGS Key and optional value of the tag, separated by an equals sign (=).You can specify more than

one tag (comma separated).
AVAILABILITYZONEThe Availability Zone in which to run the instance.
HOST Defines which OpenNebula host will use this template
EBS_OPTIMIZEDObtain a better I/O throughput for VMs with EBS provisioned volumes

Default values for all these attributes can be defined in the /etc/one/ec2_driver.default file.

<!--
Default configuration attributes for the EC2 driver
(all domains will use these values as defaults)
Valid atributes are: AKI AMI CLIENTTOKEN INSTANCETYPE KEYPAIR LICENSEPOOL

PLACEMENTGROUP PRIVATEIP RAMDISK SUBNETID TENANCY USERDATA SECURITYGROUPS
AVAILABILITYZONE EBS_OPTIMIZED ELASTICIP TAGS

Use XML syntax to specify defaults, note elements are UPCASE
Example:
<TEMPLATE>
<EC2>

<KEYPAIR>gsg-keypair</KEYPAIR>
<INSTANCETYPE>m1.small</INSTANCETYPE>

</EC2>
</TEMPLATE>

-->

<TEMPLATE>
<EC2>
<INSTANCETYPE>m1.small</INSTANCETYPE>

</EC2>
</TEMPLATE>

54 Chapter 5. Cloud Bursting

http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/ApiReference-cmd-RunInstances.html

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

5.2.5 Multi EC2 Site/Region/Account Support

It is possible to define various EC2 hosts to allow opennebula the managing of different EC2 regions or different EC2
accounts.

When you create a new host the credentials and endpoint for that host are retrieved from the
/etc/one/ec2_driver.conf file using the host name. Therefore, if you want to add a new host to manage
a different region, i.e. eu-west-1, just add your credentials and the capacity limits to the the eu-west-1 section
in the conf file, and specify that name (eu-west-1) when creating the new host.

regions:
...
eu-west-1:

region_name: us-east-1
access_key_id: YOUR_ACCESS_KEY
secret_access_key: YOUR_SECRET_ACCESS_KEY
capacity:

m1.small: 5
m1.large: 0
m1.xlarge: 0

After that, create a new Host with the eu-west-1 name:

$ onehost create eu-west-1 --im ec2 --vm ec2 --net dummy

If the Host name does not match any regions key, the default will be used.

You can define a different EC2 section in your template for each EC2 host, so with one template you can define
different AMIs depending on which host it is scheduled, just include a HOST attribute in each EC2 section:

EC2 = [HOST="ec2",
AMI="ami-0022c769"]

EC2 = [HOST="eu-west-1",
AMI="ami-03324cc9"]

You will have ami-0022c769 launched when this VM template is sent to host ec2 and ami-03324cc9 whenever the VM
template is sent to host eu-west-1.

Warning: If only one EC2 site is defined, the EC2 driver will deploy all EC2 templates onto it, not paying
attention to the HOST attribute.

The availability zone inside a region, can be specified using the AVAILABILITYZONE attribute in the EC2 section
of the template

5.2.6 Hybrid VM Templates

A powerful use of cloud bursting in OpenNebula is the ability to use hybrid templates, defining a VM if OpenNebula
decides to launch it locally, and also defining it if it is going to be outsourced to Amazon EC2. The idea behind this is
to reference the same kind of VM even if it is incarnated by different images (the local image and the remote AMI).

An example of a hybrid template:

Local Template section
NAME=MNyWebServer

CPU=1
MEMORY=256

5.2. Amazon EC2 Driver 55

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

DISK=[IMAGE="nginx-golden"]
NIC=[NETWORK="public"]

EC2=[
AMI="ami-xxxxx"]

OpenNebula will use the first portion (from NAME to NIC) in the above template when the VM is scheduled to a local
virtualization node, and the EC2 section when the VM is scheduled to an EC2 node (ie, when the VM is going to be
launched in Amazon EC2).

5.2.7 Testing

You must create a template file containing the information of the AMIs you want to launch. Additionally if you have
an elastic IP address you want to use with your EC2 instances, you can specify it as an optional parameter.

CPU = 1
MEMORY = 1700

#Xen or KVM template machine, this will be use when submitting this VM to local resources
DISK = [IMAGE_ID = 3]
NIC = [NETWORK_ID = 7]

#EC2 template machine, this will be use wen submitting this VM to EC2

EC2 = [AMI="ami-00bafcb5",
KEYPAIR="gsg-keypair",
INSTANCETYPE=m1.small]

#Add this if you want to use only EC2 cloud
#SCHED_REQUIREMENTS = 'HOSTNAME = "ec2"'

You only can submit and control the template using the OpenNebula interface:

$ onetemplate create ec2template
$ onetemplate instantiate ec2template

Now you can monitor the state of the VM with

$ onevm list
ID USER GROUP NAME STAT CPU MEM HOSTNAME TIME
0 oneadmin oneadmin one-0 runn 0 0K ec2 0d 07:03

Also you can see information (like IP address) related to the amazon instance launched via the command. The attributes
available are:

• AWS_DNS_NAME

• AWS_PRIVATE_DNS_NAME

• AWS_KEY_NAME

• AWS_AVAILABILITY_ZONE

• AWS_PLATFORM

• AWS_VPC_ID

• AWS_PRIVATE_IP_ADDRESS

• AWS_IP_ADDRESS

56 Chapter 5. Cloud Bursting

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

• AWS_SUBNET_ID

• AWS_SECURITY_GROUPS

• AWS_INSTANCE_TYPE

$ onevm show 0
VIRTUAL MACHINE 0 INFORMATION
ID : 0
NAME : pepe
USER : oneadmin
GROUP : oneadmin
STATE : ACTIVE
LCM_STATE : RUNNING
RESCHED : No
HOST : ec2
CLUSTER ID : -1
START TIME : 11/15 14:15:16
END TIME : -
DEPLOY ID : i-a0c5a2dd

VIRTUAL MACHINE MONITORING
USED MEMORY : 0K
NET_RX : 0K
NET_TX : 0K
USED CPU : 0

PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---

VIRTUAL MACHINE HISTORY
SEQ HOST ACTION DS START TIME PROLOG

0 ec2 none 0 11/15 14:15:37 2d 21h48m 0h00m00s

USER TEMPLATE
EC2=[

AMI="ami-6f5f1206",
INSTANCETYPE="m1.small",
KEYPAIR="gsg-keypair"]

SCHED_REQUIREMENTS="ID=4"

VIRTUAL MACHINE TEMPLATE
AWS_AVAILABILITY_ZONE="us-east-1d"
AWS_DNS_NAME="ec2-54-205-155-229.compute-1.amazonaws.com"
AWS_INSTANCE_TYPE="m1.small"
AWS_IP_ADDRESS="54.205.155.229"
AWS_KEY_NAME="gsg-keypair"
AWS_PRIVATE_DNS_NAME="ip-10-12-101-169.ec2.internal"
AWS_PRIVATE_IP_ADDRESS="10.12.101.169"
AWS_SECURITY_GROUPS="sg-8e45a3e7"

5.2.8 Scheduler Configuration

Since ec2 Hosts are treated by the scheduler like any other host, VMs will be automatically deployed in them. But you
probably want to lower their priority and start using them only when the local infrastructure is full.

5.2. Amazon EC2 Driver 57

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

Configure the Priority

The ec2 drivers return a probe with the value PRIORITY = -1. This can be used by the scheduler, configuring the
‘fixed’ policy in sched.conf:

DEFAULT_SCHED = [
policy = 4

]

The local hosts will have a priority of 0 by default, but you could set any value manually with the ‘onehost/onecluster
update’ command.

There are two other parameters that you may want to adjust in sched.conf:

- ``MAX_DISPATCH``: Maximum number of Virtual Machines actually dispatched to a host in each scheduling action
- ``MAX_HOST``: Maximum number of Virtual Machines dispatched to a given host in each scheduling action

In a scheduling cycle, when MAX_HOST number of VMs have been deployed to a host, it is discarded for the next
pending VMs.

For example, having this configuration:

• MAX_HOST = 1

• MAX_DISPATCH = 30

• 2 Hosts: 1 in the local infrastructure, and 1 using the ec2 drivers

• 2 pending VMs

The first VM will be deployed in the local host. The second VM will have also sort the local host with higher priority,
but because 1 VMs was already deployed, the second VM will be launched in ec2.

A quick way to ensure that your local infrastructure will be always used before the ec2 hosts is to set MAX_DISPATH
to the number of local hosts.

Force a Local or Remote Deployment

The ec2 drivers report the host attribute PUBLIC_CLOUD = YES. Knowing this, you can use that attribute in your
VM requirements.

To force a VM deployment in a local host, use:

SCHED_REQUIREMENTS = "!(PUBLIC_CLOUD = YES)"

To force a VM deployment in an ec2 host, use:

SCHED_REQUIREMENTS = "PUBLIC_CLOUD = YES"

5.3 SoftLayer Driver

5.3.1 Considerations & Limitations

You should take into account the following technical considerations when using the SoftLayer (SL) cloud with Open-
Nebula:

• There is no direct access to the hypervisor, so it cannot be monitored (we don’t know where the VM is running
on the SoftLayer cloud).

58 Chapter 5. Cloud Bursting

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

• The usual OpenNebula functionality for snapshotting, hot-plugging, or migration is not available with SoftLayer
(currently).

• By default OpenNebula will always launch slcci.small (1 CPU, 1024MB RAM) instances, unless otherwise
specified.

Name CPU Capacity Memory Capacity
slcci.small 1 Core 1024 MB
slcci.medium 2 Cores 4096 MB
slcci.large 4 Cores 8192 MB

5.3.2 Prerequisites

Warning: ruby >= 1.9.3 is required, and it is not packaged in all distros supported by OpenNebula. If you are
running on an older supported distro (like Centos 6.x or Ubuntu 12.04) please update ruby or use rvm to run a
newer (>= 1.9.3) version (remember to run install_gems after the ruby upgrade is done to reinstall all gems)

• You must have a working account for SoftLayer

• You need your username and API authentication key, that can be achieved in the user profile page

• The following gems are required softlayer_api and configparser. Otherwise, run the
install_gem script as root:

/usr/share/one/install_gems hybrid

5.3.3 OpenNebula Configuration

Uncomment the SoftLayer SL IM and VMM drivers from /etc/one/oned.conf file in order to use the driver.

IM_MAD = [
name = "sl",
executable = "one_im_sh",
arguments = "-c -t 1 -r 0 sl"]

VM_MAD = [
name = "sl",
executable = "one_vmm_sh",
arguments = "-t 15 -r 0 sl",
type = "xml"]

Driver flags are the same as other drivers:

FLAG SETs
-t Number of threads, i.e. number of actions performed at the same time
-r Number of retries when contacting SoftLayer service

Additionally you must define your credentials, the SoftLayer datacenter to be used and the maximum capacity that
you want OpenNebula to deploy on SoftLayer. In order to do this, edit the file /etc/one/sl_driver.conf:

regions:
default:

region_name: ams01
username: <your_username_here>
api_key: <your_api_key_here>
capacity:

slcci.small: 5

5.3. SoftLayer Driver 59

https://rvm.io/
http://www.softlayer.com/
https://control.softlayer.com/account/user/profile/

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

slcci.large: 0
slcci.large: 0

ams01:
region_name: ams01
username: <your_username_here>
api_key: <your_api_key_here>
capacity:

slcci.small: 5
slcci.large: 0
slcci.large: 0

m1.xlarge: 0

In the above file, each region represents a SoftLayer datacenter. (see the multi site region account section for more
information.

Once the file is saved, OpenNebula needs to be restarted (as oenadmin, do a ‘onevm restart’), create a new Host that
uses the SL drivers:

$ onehost create ams01 --im sl --vm sl --net dummy

5.3.4 SoftLayer Specific Template Attributes

In order to deploy an instance in SoftLayer through OpenNebula you must include an PUBLIC_CLOUD section in the
virtual machine template. This is an example of a virtual machine template that can be deployed in our local resources
or in SoftLayer.

CPU = 0.5
MEMORY = 128

Xen or KVM template machine, this will be use when submitting this VM to local resources
DISK = [IMAGE_ID = 3]
NIC = [NETWORK_ID = 7]

SoftLayer template machine, this will be use wen submitting this VM to SoftLayer
PUBLIC_CLOUD=[

TYPE="SOFTLAYER",
HOSTNAME="MySLVM",
DOMAIN="c12g.com",
INSTANCE_TYPE="slcci.medium",
OPERATINGSYSTEM="UBUNTU_LATEST"

]

#Add this if you want this VM to only go to the SL cloud
#SCHED_REQUIREMENTS = 'HOSTNAME = "asm01"'

These are the attributes that can be used in the PUBLIC_CLOUD section of the template for TYPE SoftLayer:

60 Chapter 5. Cloud Bursting

http://www.softlayer.com/data-centers

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

ATTRIBUTES DESCRIPTION
HOSTNAME Hostname for the computing instance
DOMAIN Domain for the computing instance
INSTANCE_TYPE Specifies the capacity of the VM in terms of CPU and memory. If both STARTCPUS and

MAXMEMORY are used, then this parameter is disregarded
STARTCPUS The number of CPU cores to allocate to the VM
MAXMEMORY The amount of memory to allocate in megabytes
HOURLYBILLING Specifies the billing type for the instance . When true the computing instance will be

billed on hourly usage, otherwise it will be billed on a monthly basis
LOCALDISK Name of the placement group. When true the disks for the computing instance will be

provisioned on the host which it runs, otherwise SAN disks will be provisioned
DEDICATEDHOST Specifies whether or not the instance must only run on hosts with instances from the same

account
DATACENTER Specifies which datacenter the instance is to be provisioned in
OPERATINGSYSTEM An identifier for the operating system to provision the computing instance with. A non

exhaustive list of identifiers can be found here
BLOCKDEVICETEMPLATEA global identifier for the template to be used to provision the computing instance
BLOCKDEVICE Size of the block device size to be presented to the VM
NETWORKCOMPONENTSMAXSPEEDSpecifies the connection speed for the instance’s network components
PRIVATENETWORKONLYSpecifies whether or not the instance only has access to the private network (ie, if it is

going to have a public IP interface or not)
PRIMARYNETWORKVLANSpecifies the network vlan which is to be used for the frontend interface of the computing

instance
PRIMARYBACKENDNETWORKVLANSpecifies the network vlan which is to be used for the backend interface of the computing

instance
USERDATA Arbitrary data to be made available to the computing instance
SSHKEYS SSH keys to install on the computing instance upon provisioning
POSTSCRIPT Specifies the uri location of the script to be downloaded and run after installation is

complete

Default values for all these attributes can be defined in the /etc/one/sl_driver.default file.

<!--
Default configuration attributes for the SoftLayer driver
(all domains will use these values as defaults)

Use XML syntax to specify defaults, note elements are UPPERCASE
Example:
<TEMPLATE>
<SOFTLAYER>

<INSTANCETYPE>scci.small</INSTANCETYPE>
</SOFTLAYER>

</TEMPLATE>
-->

<TEMPLATE>
<SOFTLAYER>
<DOMAIN>c12g.com</DOMAIN>
<INSTANCE_TYPE>slcci.small</INSTANCE_TYPE>
<HOURLYBILLINGFLAG>true</HOURLYBILLINGFLAG>
<LOCALDISKFLAG>true</LOCALDISKFLAG>

</SOFTLAYER>
</TEMPLATE>

5.3. SoftLayer Driver 61

https://github.com/softlayer/softlayer-python/blob/master/docs/cli/vs.rst

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

5.3.5 Multi SoftLayer Site/Account Support

It is possible to define various SoftLater hosts to allow OpenNebula the managing of different SoftLayer datacenters
or different SoftLayer accounts. OpenNebula choses the datacenter in which to launch the VM in the following way:

• if the VM description contains the DATACENTER attribute, then OpenNebula knows that the VM needs to be
launch in this SoftLayer datacenter

• if the name of the host matches the region name (remember, this is the same as a SL datacenter), then OpenNeb-
ula knows that the VMs sent to this host needs to be launch in that SL datacenter

• if the VM doesn’t have a DATACENTER attribute, and the host name doesn’t match any of the defined regions,
then the default region is picked.

When you create a new host the credentials and endpoint for that host are retrieved from the
/etc/one/sl_driver.conf file using the host name. Therefore, if you want to add a new host to manage a
different datacenter, i.e. sjc01, just add your credentials and the capacity limits to the the sjc01 section in the conf
file, and specify that name (sjc01) when creating the new host.

regions:
...
sjc01:

region_name: sjc01
username:
api_key:
capacity:

slcci.small: 5
slcci.medium: 0
slcci.large: 0

After that, create a new Host with the sjc01 name:

$ onehost create sjc01 --im sl --vm sl --net dummy

If the Host name does not match any regions key, the default will be used.

You can define a different SoftLayer section in your template for each SoftLayer host, so with one template you
can define different VMs depending on which host it is scheduled, just include a HOSTNAME attribute in each
PUBLIC_CLOUD section:

PUBLIC_CLOUD = [TYPE="SOFTLAYER",
HOSTNAME="sjc01",
OPERATINGSYSTEM="UBUNTU_LATEST",
INSTANCE_TYPE="sclcci.small"]

PUBLIC_CLOUD = [TYPE="SOFTLAYER",
HOSTNAME="ams01",
OPERATINGSYSTEM="REDHAT_LATEST",
INSTANCE_TYPE="sclcci.medium"]

You will have a small Ubuntu VM launched when this VM template is sent to host sjc01 and a medium RedHat VM
launched whenever the VM template is sent to host ams01.

Warning: If only one SoftLayer site is defined, the SoftLayer driver will deploy all SoftLayer templates onto it,
not paying attention to the HOSTNAME attribute.

62 Chapter 5. Cloud Bursting

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

5.3.6 Hybrid VM Templates

A powerful use of cloud bursting in OpenNebula is the ability to use hybrid templates, defining a VM if OpenNebula
decides to launch it locally, and also defining it if it is going to be outsourced to SoftLayer. The idea behind this is to
reference the same kind of VM even if it is incarnated by different images (the local image and the SoftLayer image).

An example of a hybrid template:

Local Template section
NAME=MNyWebServer

CPU=1
MEMORY=256

DISK=[IMAGE="nginx-golden"]
NIC=[NETWORK="public"]

PUBLIC_CLOUD = [TYPE="SOFTLAYER",
HOSTNAME="sjc01",
OPERATINGSYSTEM="UBUNTU_LATEST",
INSTANCE_TYPE="sclcci.small"]

OpenNebula will use the first portion (from NAME to NIC) in the above template when the VM is scheduled to a
local virtualization node, and the PUBLIC_CLOUD section of TYPE=”SOFTLAYER” when the VM is scheduled to
an SoftLayer node (ie, when the VM is going to be launched in SoftLayer).

5.3.7 Testing

You must create a template file containing the information of the VMs you want to launch.

CPU = 1
MEMORY = 1700

#Xen or KVM template machine, this will be use when submitting this VM to local resources
DISK = [IMAGE_ID = 3]
NIC = [NETWORK_ID = 7]

#SoftLayer template machine, this will be use wen submitting this VM to SoftLayer

PUBLIC_CLOUD = [TYPE="SOFTLAYER",
HOSTNAME="sjc01",
OPERATINGSYSTEM="UBUNTU_LATEST",
INSTANCE_TYPE="sclcci.small"]

#Add this if you want to use only SoftLayer cloud
#SCHED_REQUIREMENTS = 'HYPERVISOR = "SOFTLAYER"'

You can submit and control the template using the OpenNebula interface:

$ onetemplate create sltemplate
$ ontemplate instantiate sltemplate

Now you can monitor the state of the VM with

$ onevm list
ID USER GROUP NAME STAT CPU MEM HOSTNAME TIME
0 oneadmin oneadmin one-0 runn 0 0K sjc01 0d 07:03

5.3. SoftLayer Driver 63

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

Also you can see information (like IP address) related to the SoftLayer instance launched via the command. The
attributes available are:

• SL_CRED_PASSWORD

• SL_CRED_USER

• SL_DOMAIN

• SL_FULLYQUALIFIEDDOMAINNAME

• SL_GLOBALIDENTIFIER

• SL_HOSTNAME

• SL_ID

• SL_MAXCPU

• SL_MAXMEMORY

• SL_PRIMARYBACKENDIPADDRESS

• SL_PRIMARYIPADDRESS

• SL_STARTCPUS

• SL_UUID

$ onevm show 0
VIRTUAL MACHINE 0 INFORMATION
ID : 32
NAME : one-32
USER : oneadmin
GROUP : oneadmin
STATE : ACTIVE
LCM_STATE : RUNNING
RESCHED : No
HOST : sjc01
CLUSTER ID : -1
START TIME : 06/05 20:01:46
END TIME : -
DEPLOY ID : 4978604

VIRTUAL MACHINE MONITORING
USED MEMORY : 0K
USED CPU : 0
NET_TX : 0K
NET_RX : 0K

PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---

VIRTUAL MACHINE HISTORY
SEQ HOST ACTION DS START TIME PROLOG

0 sjc01 none -1 06/05 20:01:59 3d 16h53m 0h00m00s

USER TEMPLATE
PUBLIC_CLOUD = [TYPE="SOFTLAYER",

HOSTNAME="sjc01",
OPERATINGSYSTEM="UBUNTU_LATEST",

64 Chapter 5. Cloud Bursting

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

INSTANCE_TYPE="sclcci.small"]

VIRTUAL MACHINE TEMPLATE
AUTOMATIC_REQUIREMENTS="!(PUBLIC_CLOUD = YES) | (PUBLIC_CLOUD = YES & (HYPERVISOR = SOFTLAYER | HYPERVISOR = SOFTLAYER))"
CPU="1"
MEMORY="1024"
SL_CRED_PASSWORD="xxxxxx"
SL_CRED_USER="root"
SL_DOMAIN="c12g.com"
SL_FULLYQUALIFIEDDOMAINNAME="MySLVM.c12g.com"
SL_GLOBALIDENTIFIER="xx299e80-96a0-434f-b228-430689c45ffb"
SL_HOSTNAME="MySLVM"
SL_ID="4978604"
SL_MAXCPU="2"
SL_MAXMEMORY="4096"
SL_PRIMARYBACKENDIPADDRESS="10.104.201.xxx"
SL_PRIMARYIPADDRESS="5.153.45.xx"
SL_STARTCPUS="2"
SL_UUID="xxxxxxxx-a0cc-e648-2ebd-e5fb2a500965"

5.3.8 Scheduler Configuration

Since SoftLayer Hosts are treated by the scheduler like any other host, VMs will be automatically deployed in them.
But you probably want to lower their priority and start using them only when the local infrastructure is full.

Configure the Priority

The SoftLayer drivers return a probe with the value PRIORITY = -1. This can be used by the scheduler, configuring
the ‘fixed’ policy in sched.conf:

DEFAULT_SCHED = [
policy = 4

]

The local hosts will have a priority of 0 by default, but you could set any value manually with the ‘onehost/onecluster
update’ command.

There are two other parameters that you may want to adjust in sched.conf:

- MAX_DISPATCH: Maximum number of Virtual Machines actually dispatched to a host in each scheduling action
- MAX_HOST: Maximum number of Virtual Machines dispatched to a given host in each scheduling action

In a scheduling cycle, when MAX_HOST number of VMs have been deployed to a host, it is discarded for the next
pending VMs.

For example, having this configuration:

• MAX_HOST = 1

• MAX_DISPATCH = 30

• 2 Hosts: 1 in the local infrastructure, and 1 using the SoftLayer drivers

• 2 pending VMs

The first VM will be deployed in the local host. The second VM will have also sort the local host with higher priority,
but because 1 VMs was already deployed, the second VM will be launched in SoftLayer.

5.3. SoftLayer Driver 65

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

A quick way to ensure that your local infrastructure will be always used before the SoftLayer hosts is to set
MAX_DISPATH to the number of local hosts.

Force a Local or Remote Deployment

The SoftLayer drivers report the host attribute PUBLIC_CLOUD = YES. Knowing this, you can use that attribute in
your VM requirements.

To force a VM deployment in a local host, use:

SCHED_REQUIREMENTS = "!(PUBLIC_CLOUD = YES)"

To force a VM deployment in a SoftLayer host, use:

SCHED_REQUIREMENTS = "PUBLIC_CLOUD = YES"

5.4 Azure Driver

5.4.1 Considerations & Limitations

You should take into account the following technical considerations when using the Microsoft Azure (AZ) cloud with
OpenNebula:

• There is no direct access to the hypervisor, so it cannot be monitored (we don’t know where the VM is running
on the Azure cloud).

• The usual OpenNebula functionality for snapshotting, hot-plugging, or migration is not available with Azure
(currently).

• By default OpenNebula will always launch Small (1 CPU, 1792 MB RAM) instances, unless otherwise specified.

Name CPU Capacity Memory Capacity
ExtraSmall 0.1 Cores 768 MB
Small 1 Cores 1792 MB
Medium 2 Cores 3584 MB
Large 4 Cores 7168 MB
ExtraLarge 8 Cores 14336 MB
A5 2 Cores 14336 MB
A6 4 Cores 28672 MB
A7 8 Cores 57344 MB
A8 8 Cores 57344 MB
A9 16 Cores 114688 MB

5.4.2 Prerequisites

Warning: ruby >= 1.9.3 is required, and it is not packaged in all distros supported by OpenNebula. If you are
running on an older supported distro (like Centos 6.x or Ubuntu 12.04) please update ruby or use rvm to run a
newer (>= 1.9.3) version (remember to run install_gems after the ruby upgrade is done to reinstall all gems)

• You must have a working account for Azure

• You need your Azure credentials (Information on how to manage Azure certificates can be found here.). The
information can be obtained from the Management Azure page:

66 Chapter 5. Cloud Bursting

https://rvm.io/
http://azure.microsoft.com/
http://azure.microsoft.com/en-us/documentation/articles/linux-use-ssh-key/
https://manage.windowsazure.com

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

• First, the Subscription ID, that can be uploaded and retrieved from Settings -> Subscriptions

• Second, the Management Certificate file, that can be uploaded and retrieved from Settings -> Management
Certificates

• The following gem is required: azure. Otherwise, run the install_gems script as root:

/usr/share/one/install_gems cloud

5.4.3 OpenNebula Configuration

Uncomment the Azure AZ IM and VMM drivers from /etc/one/oned.conf file in order to use the driver.

IM_MAD = [
name = "az",
executable = "one_im_sh",
arguments = "-c -t 1 -r 0 az"]

VM_MAD = [
name = "az",
executable = "one_vmm_sh",
arguments = "-t 15 -r 0 az",
type = "xml"]

Driver flags are the same as other drivers:

FLAG SETs
-t Number of threads, i.e. number of actions performed at the same time
-r Number of retries when contacting Azure service

Additionally you must define your credentials, the Azure location to be used and the maximum capacity that you want
OpenNebula to deploy on Azure. In order to do this, edit the file /etc/one/az_driver.conf:

default:
region_name: "West Europe"
pem_management_cert: <path-to-your-pem-certificate-here>
subscription_id: <your-subscription-id-here>
management_endpoint:
capacity:

Small: 5
Medium: 1
Large: 0

west-europe:
region_name: "West Europe"
pem_management_cert: <path-to-your-pem-certificate-here>
subscription_id: <your-subscription-id-here>
management_endpoint:
capacity:

Small: 5
Medium: 1
Large: 0

In the above file, each region represents an Azure datacenter (Microsoft doesn’t provide an official list). (see the multi
site region account section for more information.

Once the file is saved, OpenNebula needs to be restarted (as oneadmin, do a ‘onevm restart’), create a new Host that
uses the AZ drivers:

5.4. Azure Driver 67

http://matthew.sorvaag.net/2011/06/windows-azure-data-centre-locations/

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

$ onehost create west-europe -i az -v az -n dummy

5.4.4 Azure Specific Template Attributes

In order to deploy an instance in Azure through OpenNebula you must include an PUBLIC_CLOUD section in the
virtual machine template. This is an example of a virtual machine template that can be deployed in our local resources
or in Azure.

CPU = 0.5
MEMORY = 128

Xen or KVM template machine, this will be use when submitting this VM to local resources
DISK = [IMAGE_ID = 3]
NIC = [NETWORK_ID = 7]

Azure template machine, this will be use wen submitting this VM to Azure
PUBLIC_CLOUD = [

TYPE=AZURE,
INSTANCE_TYPE=ExtraSmall,
IMAGE=b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04-LTS-amd64-server-20140606.1-en-us-30GB,
VM_USER="azuser",
VM_PASSWORD="mypassword",
WIN_RM="https",
TCP_ENDPOINTS="80",
SSHPORT=2222

]

#Add this if you want this VM to only go to the West EuropeAzure cloud
#SCHED_REQUIREMENTS = 'HOSTNAME = "west-europe"'

These are the attributes that can be used in the PUBLIC_CLOUD section of the template for TYPE “AZURE”:

ATTRIBUTES DESCRIPTION
INSTANCE_TYPE Specifies the capacity of the VM in terms of CPU and memory
IMAGE Specifies the base OS of the VM. There are various ways to obtain the list of valid images

for Azure, the simplest one is detailed here
VM_USER If the selected IMAGE is prepared for Azure provisioning, a username can be specified

here to access the VM once booted
VM_PASSWORD Password for VM_USER
LOCATION Azure datacenter where the VM will be sent. See /etc/one/az_driver.conf for possible

values (under region_name)
STORAGE_ACCOUNT Specify the storage account where this VM will belong
WIN_RM Comma-separated list of possible protocols to access this Windows VM
CLOUD_SERVICE Specifies the name of the cloud service where this VM will be linked. Defaults to

“OpennebulaDefaultCloudServiceName” to
TCP_ENDPOINTS Comma-separated list of TCP ports to be accesible from the public internet to this VM
SSHPORT Port where the VMs ssh server will listen on
VIRTUAL_NETWORK_NAMEName of the virtual network to which this VM will be connected
SUBNET NAme of the particular Subnet where this VM will be connected to
AVAILABILITY_SETName of the availability set to which this VM will belong

Default values for all these attributes can be defined in the /etc/one/az_driver.default file.

<!--
Default configuration attributes for the Azure driver
(all domains will use these values as defaults)

68 Chapter 5. Cloud Bursting

http://msdn.microsoft.com/library/azure/jj157191.aspx

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

Valid attributes are: INSTANCE_TYPE, IMAGE, VM_USER, VM_PASSWORD, LOCATION,
STORAGE_ACCOUNT, WIN_RM, CLOUD_SERVICE, TCP_ENDPOINTS, SSHPORT, AFFINITY_GROUP,
VIRTUAL_NETWORK_NAME, SUBNET and AVAILABILITY_SET
Use XML syntax to specify defaults, note elements are UPCASE
Example:
<TEMPLATE>
<AZURE>

<LOCATION>west-europe</LOCATION>
<INSTANCE_TYPE>Small</INSTANCE_TYPE>
<CLOUD_SERVICE>MyDefaultCloudService</CLOUD_SERVICE>
<IMAGE>0b11de9248dd4d87b18621318e037d37__RightImage-Ubuntu-12.04-x64-v13.4</IMAGE>
<VM_USER>MyUser</VM_USER>
<VM_PASSWORD>MyPassword</VM_PASSWORD>
<STORAGE_ACCOUNT>MyStorageAccountName</STORAGE_ACCOUNT>
<WIN_RM>http</WIN_RM>
<CLOUD_SERVICE>MyCloudServiceName</CLOUD_SERVICE>
<TCP_ENDPOINTS>80,3389:3390</TCP_ENDPOINTS>
<SSHPORT>2222</SSHPORT>
<AFFINITY_GROUP>MyAffinityGroup</AFFINITY_GROUP>
<VIRTUAL_NETWORK_NAME>MyVirtualNetwork</VIRTUAL_NETWORK_NAME>
<SUBNET>MySubNet<SUBNET>
<AVAILABILITY_SET>MyAvailabilitySetName<AVAILABILITY_SET>

</AZURE>
</TEMPLATE>

-->

<TEMPLATE>
<AZURE>

<LOCATION>west-europe</LOCATION>
<INSTANCE_TYPE>Small</INSTANCE_TYPE>

</AZURE>
</TEMPLATE>

5.4.5 Multi Azure Location/Account Support

It is possible to define various Azure hosts to allow OpenNebula the managing of different Azure locations or different
Azure accounts. OpenNebula choses the datacenter in which to launch the VM in the following way:

• if the VM description contains the LOCATION attribute, then OpenNebula knows that the VM needs to be
launch in this Azure location

• if the name of the host matches the region name (remember, this is the same as an Azure location), then Open-
Nebula knows that the VMs sent to this host needs to be launched in that Azure datacenter

• if the VM doesn’t have a LOCATION attribute, and the host name doesn’t match any of the defined regions,
then the default region is picked.

When you create a new host the credentials and endpoint for that host are retrieved from the
/etc/one/az_driver.conf file using the host name. Therefore, if you want to add a new host to manage a
different datacenter, i.e. west-europe, just add your credentials and the capacity limits to the the west-europe
section in the conf file, and specify that name (west-europe) when creating the new host.

regions:
...
west-europe:

region_name: "West Europe"
pem_management_cert: "<path-to-pem-certificate>"
subscription_id: "your-subscription-id"

5.4. Azure Driver 69

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

management_endpoint:
capacity:

Small: 5
Medium: 1
Large: 0

After that, create a new Host with the west-europe name:

$ onehost create west-europe -i az -v az -n dummy

If the Host name does not match any regions key, the default will be used.

You can define a different Azure section in your template for each Azure host, so with one template you can define
different VMs depending on which host it is scheduled, just include a LOCATION attribute in each PUBLIC_CLOUD
section:

PUBLIC_CLOUD = [TYPE=AZURE,
INSTANCE_TYPE=Small,
IMAGE=b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04-LTS-amd64-server-20140606.1-en-us-30GB,
VM_USER="MyUserName",
VM_PASSWORD="MyPassword",
LOCATION="brazil-south"

]

PUBLIC_CLOUD = [TYPE=AZURE,
INSTANCE_TYPE=Medium,
IMAGE=0b11de9248dd4d87b18621318e037d37__RightImage-Ubuntu-12.04-x64-v13.4,
VM_USER="MyUserName",
VM_PASSWORD="MyPassword",
LOCATION="west-europe"

]

You will have a small Ubuntu 14.04 VM launched when this VM template is sent to host brazil-south and a medium
Ubuntu 13.04 VM launched whenever the VM template is sent to host west-europe.

Warning: If only one Azure host is defined, the Azure driver will deploy all Azure templates onto it, not paying
attention to the LOCATION attribute.

5.4.6 Hybrid VM Templates

A powerful use of cloud bursting in OpenNebula is the ability to use hybrid templates, defining a VM if OpenNebula
decides to launch it locally, and also defining it if it is going to be outsourced to Azure. The idea behind this is to
reference the same kind of VM even if it is incarnated by different images (the local image and the Azure image).

An example of a hybrid template:

Local Template section
NAME=MNyWebServer

CPU=1
MEMORY=256

DISK=[IMAGE="nginx-golden"]
NIC=[NETWORK="public"]

PUBLIC_CLOUD = [TYPE=AZURE,
INSTANCE_TYPE=Medium,

70 Chapter 5. Cloud Bursting

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

IMAGE=0b11de9248dd4d87b18621318e037d37__RightImage-Ubuntu-12.04-x64-v13.4,
VM_USER="MyUserName",
VM_PASSWORD="MyPassword",
LOCATION="west-europe"

]

OpenNebula will use the first portion (from NAME to NIC) in the above template when the VM is scheduled to a local
virtualization node, and the PUBLIC_CLOUD section of TYPE=”AZURE” when the VM is scheduled to an Azure
node (ie, when the VM is going to be launched in Azure).

5.4.7 Testing

You must create a template file containing the information of the VMs you want to launch.

CPU = 1
MEMORY = 1700

Xen or KVM template machine, this will be use when submitting this VM to local resources
DISK = [IMAGE_ID = 3]
NIC = [NETWORK_ID = 7]

Azure template machine, this will be use when submitting this VM to Azure

PUBLIC_CLOUD = [TYPE=AZURE,
INSTANCE_TYPE=Medium,
IMAGE=0b11de9248dd4d87b18621318e037d37__RightImage-Ubuntu-12.04-x64-v13.4,
VM_USER="MyUserName",
VM_PASSWORD="MyPassword",
LOCATION="west-europe"

]

Add this if you want to use only Azure cloud
#SCHED_REQUIREMENTS = 'HYPERVISOR = "AZURE"'

You can submit and control the template using the OpenNebula interface:

$ onetemplate create aztemplate
$ ontemplate instantiate aztemplate

Now you can monitor the state of the VM with

$ onevm list
ID USER GROUP NAME STAT CPU MEM HOSTNAME TIME
0 oneadmin oneadmin one-0 runn 0 0K west-europe 0d 07:03

Also you can see information (like IP address) related to the Azure instance launched via the command. The attributes
available are:

• AZ_AVAILABILITY_SET_NAME

• AZ_CLOUD_SERVICE_NAME,

• AZ_DATA_DISKS,

• AZ_DEPLOYMENT_NAME,

• AZ_DISK_NAME,

• AZ_HOSTNAME,

5.4. Azure Driver 71

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

• AZ_IMAGE,

• AZ_IPADDRESS,

• AZ_MEDIA_LINK,

• AZ_OS_TYPE,

• AZ_ROLE_SIZE,

• AZ_TCP_ENDPOINTS,

• AZ_UDP_ENDPOINTS,

• AZ_VIRTUAL_NETWORK_NAME

$ onevm show 0
VIRTUAL MACHINE 0 INFORMATION
ID : 0
NAME : one-0
USER : oneadmin
GROUP : oneadmin
STATE : ACTIVE
LCM_STATE : RUNNING
RESCHED : No
START TIME : 06/25 13:05:29
END TIME : -
HOST : west-europe
CLUSTER ID : -1
DEPLOY ID : one-0_opennebuladefaultcloudservicename-0

VIRTUAL MACHINE MONITORING
USED MEMORY : 0K
USED CPU : 0
NET_TX : 0K
NET_RX : 0K

PERMISSIONS
OWNER : um-
GROUP : ---
OTHER : ---

VIRTUAL MACHINE HISTORY
SEQ HOST ACTION DS START TIME PROLOG

0 west-europe none -1 06/25 13:06:25 0d 00h06m 0h00m00s

USER TEMPLATE
PUBLIC_CLOUD=[

IMAGE="b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04-LTS-amd64-server-20140606.1-en-us-30GB",
INSTANCE_TYPE="ExtraSmall",
SSH_PORT="2222",
TCP_ENDPOINTS="80",
TYPE="AZURE",
VM_PASSWORD="MyVMPassword",
VM_USER="MyUserName",
WIN_RM="https"]

VIRTUAL MACHINE TEMPLATE
AUTOMATIC_REQUIREMENTS="!(PUBLIC_CLOUD = YES) | (PUBLIC_CLOUD = YES & (HYPERVISOR = AZURE | HYPERVISOR = AZURE))"
AZ_CLOUD_SERVICE_NAME="opennebuladefaultcloudservicename-0"

72 Chapter 5. Cloud Bursting

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

AZ_DEPLOYMENT_NAME="OpenNebulaDefaultCloudServiceName-0"
AZ_DISK_NAME="OpenNebulaDefaultCloudServiceName-0-one-0_OpenNebulaDefaultCloudServiceName-0-0-201406251107210062"
AZ_HOSTNAME="ubuntu"
AZ_IMAGE="b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04-LTS-amd64-server-20140606.1-en-us-30GB"
AZ_IPADDRESS="191.233.70.93"
AZ_MEDIA_LINK="http://one0opennebuladefaultclo.blob.core.windows.net/vhds/disk_2014_06_25_13_07.vhd"
AZ_OS_TYPE="Linux"
AZ_ROLE_SIZE="ExtraSmall"
AZ_TCP_ENDPOINTS="name=SSH,vip=23.97.101.202,publicport=2222,local_port=22,local_port=tcp;name=TCP-PORT-80,vip=23.97.101.202,publicport=80,local_port=80,local_port=tcp"
CPU="1"
MEMORY="1024"
VMID="0"

5.4.8 Scheduler Configuration

Since Azure Hosts are treated by the scheduler like any other host, VMs will be automatically deployed in them. But
you probably want to lower their priority and start using them only when the local infrastructure is full.

Configure the Priority

The Azure drivers return a probe with the value PRIORITY = -1. This can be used by the scheduler, configuring the
‘fixed’ policy in sched.conf:

DEFAULT_SCHED = [
policy = 4

]

The local hosts will have a priority of 0 by default, but you could set any value manually with the ‘onehost/onecluster
update’ command.

There are two other parameters that you may want to adjust in sched.conf:

- MAX_DISPATCH: Maximum number of Virtual Machines actually dispatched to a host in each scheduling action
- MAX_HOST: Maximum number of Virtual Machines dispatched to a given host in each scheduling action

In a scheduling cycle, when MAX_HOST number of VMs have been deployed to a host, it is discarded for the next
pending VMs.

For example, having this configuration:

• MAX_HOST = 1

• MAX_DISPATCH = 30

• 2 Hosts: 1 in the local infrastructure, and 1 using the Azure drivers

• 2 pending VMs

The first VM will be deployed in the local host. The second VM will have also sort the local host with higher priority,
but because 1 VMs was already deployed, the second VM will be launched in Azure.

A quick way to ensure that your local infrastructure will be always used before the Azure hosts is to set
MAX_DISPATH to the number of local hosts.

Force a Local or Remote Deployment

The Azure drivers report the host attribute PUBLIC_CLOUD = YES. Knowing this, you can use that attribute in your
VM requirements.

5.4. Azure Driver 73

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

To force a VM deployment in a local host, use:

SCHED_REQUIREMENTS = "!(PUBLIC_CLOUD = YES)"

To force a VM deployment in a Azure host, use:

SCHED_REQUIREMENTS = "PUBLIC_CLOUD = YES"

74 Chapter 5. Cloud Bursting

CHAPTER

SIX

APPLICATION INSIGHT

6.1 OneGate

OneGate allows Virtual Machine guests to push monitoring information to OpenNebula. Users and administrators can
use it to gather metrics, detect problems in their applications, and trigger OneFlow auto-scaling rules

6.1.1 Next Steps

• OneGate Server Configuration

• Application Monitoring

6.2 OneGate Server Configuration

The OneGate service allows Virtual Machines guests to push monitoring information to OpenNebula. Although it is
installed by default, its use is completely optional.

6.2.1 Requirements

Check the Installation guide for details of what package you have to install depending on your distribution

6.2.2 Configuration

The OneGate configuration file can be found at /etc/one/onegate-server.conf. It uses YAML syntax to
define the following options:

Server Configuration

• one_xmlrpc: OpenNebula daemon host and port

• host: Host where OneGate will listen

• port: Port where OneGate will listen

Log

• debug_level: Log debug level. 0 = ERROR, 1 = WARNING, 2 = INFO, 3 = DEBUG

Auth

• auth: Authentication driver for incomming requests.

75

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

– onegate: based on token provided in the context

• core_auth: Authentication driver to communicate with OpenNebula core.

– cipher for symmetric cipher encryption of tokens

– x509 for x509 certificate encryption of tokens. For more information, visit the OpenNebula Cloud Auth
documentation.

• oneflow_server Endpoint where the OneFlow server is listening.

This is the default file

##
Server Configuration
##

OpenNebula sever contact information
#
:one_xmlrpc: http://localhost:2633/RPC2

Server Configuration
#
:host: 127.0.0.1
:port: 5030

##
Log
##

Log debug level
0 = ERROR, 1 = WARNING, 2 = INFO, 3 = DEBUG
#
:debug_level: 3

##
Auth
##

Authentication driver for incomming requests
onegate, based on token provided in the context
#
:auth: onegate

Authentication driver to communicate with OpenNebula core
cipher, for symmetric cipher encryption of tokens
x509, for x509 certificate encryption of tokens
#
:core_auth: cipher

##
OneFlow Endpoint
##

:oneflow_server: http://localhost:2474

6.2.3 Start OneGate

To start and stop the server, use the onegate-server start/stop command:

76 Chapter 6. Application Insight

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

$ onegate-server start
onegate-server started

Warning: By default, the server will only listen to requests coming from localhost. Change the :host at-
tribute in /etc/one/onegate-server.conf to your server public IP, or 0.0.0.0 so onegate will listen on
any interface.

Inside /var/log/one/ you will find new log files for the server:

/var/log/one/onegate.error
/var/log/one/onegate.log

6.2.4 Use OneGate

Before your VMs can communicate with OneGate, you need to edit /etc/one/oned.conf and set the OneGate
endpoint. This IP must be reachable from your VMs.

ONEGATE_ENDPOINT = "http://192.168.0.5:5030"

Continue to the OneGate usage guide.

6.3 Application Monitoring

OneGate allows Virtual Machine guests to pull and push service and vm information from OpenNebula. Users and
administrators can use it to gather metrics, detect problems in their applications, and trigger OneFlow elasticity rules.

For Virtual Machines that are part of a Multi-VM Application (Service), they can also retrieve the Service information
directly from OneGate.

6.3.1 OneGate Workflow Explained

OneGate is a server that listens to http connections from the Virtual Machines. OpenNebula assigns an individual token
to each VM instance, and Applications running inside the VM use this token to send monitoring metrics to OneGate.
This token is generated using VM information and signed with the user TOKEN_PASSWORD. This password can be
changed updating the user template, but tokens from existing vms will not work anymore.

When OneGate checks the VM ID and the token sent, the new information is placed inside the VM’s user template
section. This means that the application metrics are visible from the command line, Sunstone, or the APIs.

6.3.2 OneGate Usage

First, the cloud administrator must configure and start the OneGate server.

Setup the VM Template

Your VM Template must set the CONTEXT/TOKEN attribute to yes.

6.3. Application Monitoring 77

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

CPU = "0.5"
MEMORY = "128"

DISK = [
IMAGE_ID = "0"]

NIC = [
NETWORK_ID = "0"]

CONTEXT = [
TOKEN = "YES"]

When this Template is instantiated, OpenNebula will automatically add the ONEGATE_ENDPOINT context variable,
and a token.txt will be placed in the context cdrom. This token.txt file is only accessible from inside the VM.
...

CONTEXT=[
DISK_ID="1",
ONEGATE_ENDPOINT="http://192.168.0.1:5030",
TARGET="hdb",
TOKEN="YES"]

OneGate API

OneGate provides a REST API. To use this API you will need to get some data from the CONTEXT file.

The contextualization cdrom should contain the context.sh and token.txt files.

mkdir /mnt/context
mount /dev/hdb /mnt/context
cd /mnt/context
ls
context.sh token.txt
cat context.sh
Context variables generated by OpenNebula
DISK_ID='1'
ONEGATE_ENDPOINT='http://192.168.0.1:5030'
VMID='0'
TARGET='hdb'
TOKEN='yes'

cat token.txt
yCxieDUS7kra7Vn9ILA0+g==

With that data, you can obtain the headers required for all the ONEGATE API methods:

• Headers:

– X-ONEGATE-TOKEN: token.txt contents

– X-ONEGATE-VMID: <vmid>

OneGate supports these actions:

• GET ${ONEGATE_ENDPOINT}/vm: To request information about the Virtual Machine. The information is
returned in JSON format and is ready for public cloud usage:

$ curl -X "GET" "${ONEGATE_ENDPOINT}/vm" \
--header "X-ONEGATE-TOKEN: `cat token.txt`" \
--header "X-ONEGATE-VMID: $VMID"

78 Chapter 6. Application Insight

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

{
"VM": {

"ID": ...,
"NAME": ...,
"TEMPLATE": {

"NIC": [
{

"IP": ...,
"IP6_LINK": ...,
"MAC": ...,
"NETWORK": ...,

},
// more nics ...

]
},
"USER_TEMPLATE": {

"ROLE_NAME": ...,
"SERVICE_ID": ...,
// more user template attributes

}
}

}

• PUT ${ONEGATE_ENDPOINT}/vm: To add information to the VM template:

$ curl -X "PUT" "${ONEGATE_ENDPOINT}/vm" \
--header "X-ONEGATE-TOKEN: `cat token.txt`" \
--header "X-ONEGATE-VMID: $VMID" \
-d "APP_LOAD = 9.7"

The new metric is stored in the user template section of the VM:

$ onevm show 0
...
USER TEMPLATE
APP_LOAD="9.7"

• GET ${ONEGATE_ENDPOINT}/service: To request information about the Virtual Machine. The infor-
mation is returned in JSON format and is ready for public cloud usage:

$ curl -X "GET" "${ONEGATE_ENDPOINT}/service" \
--header "X-ONEGATE-TOKEN: `cat token.txt`" \
--header "X-ONEGATE-VMID: $VMID"

{
"SERVICE": {

"id": ...,
"name": ...,
"roles": [

{
"name": ...,
"cardinality": ...,
"state": ...,
"nodes": [

{
"deploy_id": ...,
"running": true|false,
"vm_info": {

// VM template as return by GET /VM

6.3. Application Monitoring 79

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

}

},
// more nodes ...

]
},
// more roles ...

]
}

}

• GET ${ONEGATE_ENDPOINT}: returns information endpoints:

$ curl -X "GET" "${ONEGATE_ENDPOINT}/service" \
--header "X-ONEGATE-TOKEN: `cat token.txt`" \
--header "X-ONEGATE-VMID: $VMID"

{
"vm_info": "http://<onegate_endpoint>/vm",
"service_info": "http://<onegate_endpoint>/service"

}

By pushing data PUT /VM from one VM and pulling the service data from another VM GET /service, nodes that
are part of a OneFlow service can pass values from one to another.

6.3.3 Sample Script

#!/bin/bash

--
Copyright 2002-2013, OpenNebula Project (OpenNebula.org), C12G Labs
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#--- #

##
Initialization
##

ERROR=0

if [-z $ONEGATE_TOKEN]; then
echo "ONEGATE_TOKEN env variable must point to the token.txt file"
ERROR=1

fi

if [-z $ONEGATE_ENDPOINT]; then

80 Chapter 6. Application Insight

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

echo "ONEGATE_ENDPOINT env variable must be set"
ERROR=1

fi

if [$ERROR = 1]; then
exit -1

fi

TMP_DIR=`mktemp -d`
echo "" > $TMP_DIR/metrics

##
Memory metrics
##

MEM_TOTAL=`grep MemTotal: /proc/meminfo | awk '{print $2}'`
MEM_FREE=`grep MemFree: /proc/meminfo | awk '{print $2}'`
MEM_USED=$(($MEM_TOTAL-$MEM_FREE))

MEM_USED_PERC="0"

if ! [-z $MEM_TOTAL] && [$MEM_TOTAL -gt 0]; then
MEM_USED_PERC=`echo "$MEM_USED $MEM_TOTAL" | \

awk '{ printf "%.2f", 100 * $1 / $2 }'`
fi

SWAP_TOTAL=`grep SwapTotal: /proc/meminfo | awk '{print $2}'`
SWAP_FREE=`grep SwapFree: /proc/meminfo | awk '{print $2}'`
SWAP_USED=$(($SWAP_TOTAL - $SWAP_FREE))

SWAP_USED_PERC="0"

if ! [-z $SWAP_TOTAL] && [$SWAP_TOTAL -gt 0]; then
SWAP_USED_PERC=`echo "$SWAP_USED $SWAP_TOTAL" | \

awk '{ printf "%.2f", 100 * $1 / $2 }'`
fi

#echo "MEM_TOTAL = $MEM_TOTAL" >> $TMP_DIR/metrics
#echo "MEM_FREE = $MEM_FREE" >> $TMP_DIR/metrics
#echo "MEM_USED = $MEM_USED" >> $TMP_DIR/metrics
echo "MEM_USED_PERC = $MEM_USED_PERC" >> $TMP_DIR/metrics

#echo "SWAP_TOTAL = $SWAP_TOTAL" >> $TMP_DIR/metrics
#echo "SWAP_FREE = $SWAP_FREE" >> $TMP_DIR/metrics
#echo "SWAP_USED = $SWAP_USED" >> $TMP_DIR/metrics
echo "SWAP_USED_PERC = $SWAP_USED_PERC" >> $TMP_DIR/metrics

##
Disk metrics
##

/bin/df -k -P | grep '^/dev' > $TMP_DIR/df

cat $TMP_DIR/df | while read line; do
NAME=`echo $line | awk '{print $1}' | awk -F '/' '{print $NF}'`

DISK_TOTAL=`echo $line | awk '{print $2}'`

6.3. Application Monitoring 81

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

DISK_USED=`echo $line | awk '{print $3}'`
DISK_FREE=`echo $line | awk '{print $4}'`

DISK_USED_PERC="0"

if ! [-z $DISK_TOTAL] && [$DISK_TOTAL -gt 0]; then
DISK_USED_PERC=`echo "$DISK_USED $DISK_TOTAL" | \

awk '{ printf "%.2f", 100 * $1 / $2 }'`
fi

#echo "DISK_TOTAL_$NAME = $DISK_TOTAL" >> $TMP_DIR/metrics
#echo "DISK_FREE_$NAME = $DISK_FREE" >> $TMP_DIR/metrics
#echo "DISK_USED_$NAME = $DISK_USED" >> $TMP_DIR/metrics
echo "DISK_USED_PERC_$NAME = $DISK_USED_PERC" >> $TMP_DIR/metrics

done

##
PUT command
##

VMID=(source /mnt/context.sh; echo $VMID)

curl -X "PUT" $ONEGATE_ENDPOINT/vm \
--header "X-ONEGATE-TOKEN: `cat $ONEGATE_TOKEN`" \
--header "X-ONEGATE-VMID: $VMID" \
--data-binary @$TMP_DIR/metrics

82 Chapter 6. Application Insight

CHAPTER

SEVEN

PUBLIC CLOUD

7.1 Building a Public Cloud

7.1.1 What is a Public Cloud?

A Public Cloud is an extension of a Private Cloud to expose RESTful Cloud interfaces. Cloud interfaces can be
added to your Private or Hybrid Cloud if you want to provide partners or external users with access to your infrastruc-
ture, or to sell your overcapacity. Obviously, a local cloud solution is the natural back-end for any public cloud.

7.1.2 The User View

The following interfaces provide a simple and remote management of cloud (virtual) resources at a high abstrac-
tion level:

• EC2 Query subset

Users will be able to use commands thatclone the functionality of the EC2 Cloud service. Starting with a working
installation of an OS residing on an .img file, with three simple steps a user can launch it in the cloud.

First, they will be able to upload it to the cloud using:

83

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

$./econe-upload /images/gentoo.img
Success: ImageId ami-00000001

After the image is uploaded in OpenNebula repository, it needs to be registered to be used in the cloud:

$./econe-register ami-00000001
Success: ImageId ami-00000001

Now the user can launch the registered image to be run in the cloud:

$./econe-run-instances -H ami-00000001
Owner ImageId InstanceId InstanceType
--
helen ami-00000001 i-15 m1.small

Additionally, the instance can be monitored with:

$./econe-describe-instances -H
Owner Id ImageId State IP Type
--
helen i-15 ami-00000001 pending 147.96.80.33 m1.small

7.1.3 How the System Operates

There is no modification in the operation of OpenNebula to expose Cloud interfaces. Users can interface the
infrastructure using any Private or Public Cloud interface.

7.2 EC2 Server Configuration

7.2.1 Overview

The OpenNebula EC2 Query is a web service that enables you to launch and manage virtual machines in your Open-
Nebula installation through the Amazon EC2 Query Interface. In this way, you can use any EC2 Query tool or utility
to access your Private Cloud. The EC2 Query web service is implemented upon the OpenNebula Cloud API (OCA)
layer that exposes the full capabilities of an OpenNebula private cloud; and Sinatra, a widely used light web frame-
work.

84 Chapter 7. Public Cloud

http://docs.amazonwebservices.com/AWSEC2/2009-04-04/DeveloperGuide/index.html?using-query-api.html
http://www.sinatrarb.com/

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

The current implementation includes the basic routines to use a Cloud, namely: image upload and registration, and the
VM run, describe and terminate operations. The following sections explain you how to install and configure the EC2
Query web service on top of a running OpenNebula cloud.

Warning: The OpenNebula EC2 Query service provides a Amazon EC2 Query API compatible interface to your
cloud, that can be used alongside the native OpenNebula CLI or OpenNebula Sunstone.

Warning: The OpenNebula distribution includes the tools needed to use the EC2 Query service.

7.2.2 Requirements & Installation

You must have an OpenNebula site properly configured and running , be sure to check the OpenNebula Installation
and Configuration Guides to set up your private cloud first. This guide also assumes that you are familiar with the
configuration and use of OpenNebula.

The OpenNebula EC2 Query service was installed during the OpenNebula installation, and the dependencies of this
service are installed when using the install_gems tool as explained in the installation guide

If you installed OpenNebula from source you can install the EC2 Query dependencias as explained at the end of the
Building from Source Code guide

7.2.3 Configuration

The service is configured through the /etc/one/econe.conf file, where you can set up the basic operational
parameters for the EC2 Query web service. The following table summarizes the available options:

Server configuration

• tmpdir: Directory to store temp files when uploading images

• one_xmlrpc: oned xmlrpc service, http://localhost:2633/RPC2

• host: Host where econe server will run

• port: Port where econe server will run

• ssl_server: URL for the EC2 service endpoint, when configured through a proxy

Log

• debug_level: Log debug level, 0 = ERROR, 1 = WARNING, 2 = INFO, 3 = DEBUG.

Auth

• auth: Authentication driver for incomming requests

• core_auth: Authentication driver to communicate with OpenNebula core. Check this guide for more infor-
mation about the core_auth syste

File based templates

• use_file_templates: Use former file based templates for instance types instead of OpenNebula templates

• instance_types: DEPRECATED The VM types for your cloud

Resources

• describe_with_terminated_instances: Include terminated instances in the describe_instances xml.
When this parameter is enabled all the VMs in DONE state will be retrieved in each descibe_instances action
and then filtered. This can cause performance issues when the pool of VMs in DONE state is huge

7.2. EC2 Server Configuration 85

http://localhost:2633/RPC2

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

• terminated_instances_expiration_time: Terminated VMs will be included in the list till the ter-
mination date + terminated_instances_expiration_time is eached

• datastore_id: Datastore in which the Images uploaded through EC2 will be allocated, by default 1

• cluster_id: Cluster associated with the EC2 resources, by default no Cluster is defined

Elastic IP

• elasticips_vnet_id: VirtualNetwork containing the elastic ips to be used with EC2. If no defined the
Elastic IP functionality is disabled

• associate_script: Script to associate a public IP with a private IP arguments: elastic_ip private_ip
vnet_template(base64_encoded)

• disassociate_script: Script to disassociate a public IP arguments: elastic_ip

EBS

• ebs_fstype: FSTYPE that will be used when creating new volumes (DATABLOCKs)

Warning: The :host must be a FQDN, do not use IP’s here.

Warning: Preserve YAML syntax in the econe.conf file.

Cloud Users

The cloud users have to be created in the OpenNebula system by oneadmin using the oneuser utility. Once a user
is registered in the system, using the same procedure as to create private cloud users, they can start using the system.

The users will authenticate using the Amazon EC2 procedure with AWSAccessKeyId their OpenNebula’s username
and AWSSecretAccessKey their OpenNebula’s hashed password.

The cloud administrator can limit the interfaces that these users can use to interact with OpenNebula by setting the
driver public for them. Using that driver cloud users will not be able to interact with OpenNebula through Sunstone,
CLI nor XML-RPC.

$ oneuser chauth cloud_user public

Defining VM Types

You can define as many Virtual Machine types as you want, just:

• Create a new OpenNebula template for the new type and make it available for the users group. You can
use restricted attributes and set permissions like any other opennebula resource. You must include the
EC2_INSTANCE_TYPE parameter inside the template definition, otherwise the template will not be avail-
able to be used as an instance type in EC2.

This is the content of the /tmp/m1.small file
NAME = "m1.small"
EC2_INSTANCE_TYPE = "m1.small"
CPU = 1
MEMORY = 1700
...

$ onetemplate create /tmp/m1.small
$ onetemplate chgrp m1.small users
$ onetemplate chmod m1.small 640

86 Chapter 7. Public Cloud

http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/index.html?using-query-api.html

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

The template must include all the required information to instantiate a new virtual machine, such as network config-
uration, capacity, placement requirements, etc. This information will be used as a base template and will be merged
with the information provided by the user.

The user will select an instance type along with the ami id, keypair and user data when creating a new instance.
Therefore, the template should not include the OS, since it will be specified by the user with the selected AMI.

Warning: The templates are processed by the EC2 server to include specific data for the instance.

7.2.4 Starting the Cloud Service

To start the EC2 Query service just issue the following command

$ econe-server start

You can find the econe server log file in /var/log/one/econe-server.log.

To stop the EC2 Query service:

$ econe-server stop

7.2.5 Advanced Configuration

Enabling Keypair

In order to benefit from the Keypair functionality, the images that will be used by the econe users must be prepared to
read the EC2_PUBLIC_KEY and EC2_USER_DATA from the CONTEXT disk. This can be easliy achieved with the
new contextualization packages, generating a new custom contextualization package like this one:

#!/bin/bash
echo "$EC2_PUBLIC_KEY" > /root/.ssh/authorized_keys

Enabling Elastic IP Functionality

An Elastic IP address is associated with the user, not a particular instance, and the user controls that address until he
chooses to release it. This way the user can programmatically remap his public IP addresses to any of his instances.

In order to enable this functionality you have to follow the following steps:

1. Create a VNET Containing the Elastic IPS

• As oneadmin create a new VirtualNetwork containing the public IPs that will be controlled by the EC2 users.
Each IP must be placed in its own AR:

NAME = "ElasticIPs"

PHYDEV = "eth0"
VLAN = "YES"
VLAN_ID = 50
BRIDGE = "brhm"

7.2. EC2 Server Configuration 87

http://opennebula.org/documentation:rel3.8:cong#contextualization_packages_for_vm_images

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

AR = [IP=10.0.0.1, TYPE=IP4, SIZE=1]
AR = [IP=10.0.0.2, TYPE=IP4, SIZE=1]
AR = [IP=10.0.0.3, TYPE=IP4, SIZE=1]
AR = [IP=10.0.0.4, TYPE=IP4, SIZE=1]

Custom Attributes to be used in Context
GATEWAY = 130.10.0.1

$ onevnet create /tmp/fixed.vnet
ID: 8

This VNET will be managed by the oneadmin user, therefore USE permission for the ec2 users is not required

• Update the econe.conf file with the VNET ID:

:elastic_ips_vnet: 8

• Provide associate and disassociate scripts

The interaction with the infrastructure has been abstracted, therefore two scripts have to be provided by the cloud
administrator in order to interact with each specific network configuration. This two scripts enable us to adapt this
feature to different configurations and data centers.

These scripts are language agnostic and their path has to be specified in the econe configuration file:

:associate_script: /usr/bin/associate_ip.sh
:disassociate_script: /usr/bin/disassociate_ip.sh

The associate script will receive three arguments: elastic_ip to be associated; private_ip of the instance; Virtual
Network template base64 encoded

The disassociate script will receive three arguments: elastic_ip to be disassociated

Scripts to interact with OpenFlow can be found in the following ecosystem project

Using a Specific Group for EC2

It is recommended to create a new group to handle the ec2 cloud users:

$ onegroup create ec2
ID: 100

Create and add the users to the ec2 group (ID:100):

$ oneuser create clouduser my_password
ID: 12
$ oneuser chgrp 12 100

Also, you will have to create ACL rules so that the cloud users are able to deploy their VMs in the allowed hosts.

$ onehost list
ID NAME CLUSTER RVM ALLOCATED_CPU ALLOCATED_MEM STAT
1 kvm1 - 2 110 / 200 (55%) 640M / 3.6G (17%) on
1 kvm2 - 2 110 / 200 (55%) 640M / 3.6G (17%) on
1 kvm3 - 2 110 / 200 (55%) 640M / 3.6G (17%) on

These rules will allow users inside the ec2 group (ID:100) to deploy VMs in the hosts kvm01 (ID:0) and kvm03 (ID:3)

$ oneacl create "@100 HOST/#1 MANAGE"
$ oneacl create "@100 HOST/#3 MANAGE"

88 Chapter 7. Public Cloud

http://www.opennebula.org/software:ecosystem:onenox

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

You have to create a VNet network using the onevnet utility with the IP’s you want to lease to the VMs
created with the EC2 Query service.

$ onevnet create /tmp/templates/vnet
ID: 12

Remember that you will have to add this VNet (ID:12) to the users group (ID:100) and give USE (640) permissions to
the group in order to get leases from it.

$ onevnet chgrp 12 100
$ onevnet chmod 12 640

Warning: You will have to update the NIC template, inside the /etc/one/ec2query_templates directory,
in order to use this VNet ID

Configuring a SSL Proxy

OpenNebula EC2 Query Service runs natively just on normal HTTP connections. If the extra security provided by
SSL is needed, a proxy can be set up to handle the SSL connection that forwards the petition to the EC2 Query Service
and takes back the answer to the client.

This set up needs:

• A server certificate for the SSL connections

• An HTTP proxy that understands SSL

• EC2Query Service configuration to accept petitions from the proxy

If you want to try out the SSL setup easily, you can find in the following lines an example to set a self-signed certificate
to be used by a lighttpd configured to act as an HTTP proxy to a correctly configured EC2 Query Service.

Let’s assume the server were the lighttpd proxy is going to be started is called cloudserver.org. Therefore, the
steps are:

1. Snakeoil Server Certificate

We are going to generate a snakeoil certificate. If using an Ubuntu system follow the next steps (otherwise your
milleage may vary, but not a lot):

• Install the ssl-cert package

$ sudo apt-get install ssl-cert

• Generate the certificate

$ sudo /usr/sbin/make-ssl-cert generate-default-snakeoil

• As we are using lighttpd, we need to append the private key with the certificate to obtain a server certificate valid
to lighttpd

$ sudo cat /etc/ssl/private/ssl-cert-snakeoil.key /etc/ssl/certs/ssl-cert-snakeoil.pem > /etc/lighttpd/server.pem

2. lighttpd as a SSL HTTP Proxy

You will need to edit the /etc/lighttpd/lighttpd.conf configuration file and

7.2. EC2 Server Configuration 89

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

• Add the following modules (if not present already)

– mod_access

– mod_alias

– mod_proxy

– mod_accesslog

– mod_compress

• Change the server port to 443 if you are going to run lighttpd as root, or any number above 1024 otherwise:

server.port = 8443

• Add the proxy module section:

proxy module
read proxy.txt for more info
proxy.server = ("" =>

("" =>
(
"host" => "127.0.0.1",
"port" => 4567

)
)

)

SSL engine
ssl.engine = "enable"
ssl.pemfile = "/etc/lighttpd/server.pem"

The host must be the server hostname of the computer running the EC2Query Service, and the port the one that the
EC2Query Service is running on.

3. EC2Query Service Configuration

The econe.conf needs to define the following:

Host and port where econe server will run
:host: localhost
:port: 4567

#SSL proxy URL that serves the API (set if is being used)
:ssl_server: https://cloudserver.org:8443/

Once the lighttpd server is started, EC2Query petitions using HTTPS uris can be directed to
https://cloudserver.org:8443, that will then be unencrypted, passed to localhost, port 4567, satis-
fied (hopefully), encrypted again and then passed back to the client.

Warning: Note that :ssl_server must be an URL that may contain a custom path.

90 Chapter 7. Public Cloud

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

7.3 OpenNebula EC2 User Guide

The EC2 Query API offers the functionality exposed by Amazon EC2: upload images, register them, run, monitor and
terminate instances, etc. In short, Query requests are HTTP or HTTPS requests that use the HTTP verb GET or POST
and a Query parameter.

OpenNebula implements a subset of the EC2 Query interface, enabling the creation of public clouds managed by
OpenNebula.

7.3.1 AMIs

• upload image: Uploads an image to OpenNebula

• register image: Register an image into OpenNebula

• describe images: Lists all registered images belonging to one particular user.

7.3.2 Instances

• run instances: Runs an instance of a particular image (that needs to be referenced).

• describe instances: Outputs a list of launched images belonging to one particular user.

• terminate instances: Shutdowns a set ofvirtual machines (or cancel, depending on its state).

• reboot instances: Reboots a set ofvirtual machines.

• start instances: Starts a set ofvirtual machines.

• stop instances: Stops a set ofvirtual machines.

7.3.3 EBS

• create volume: Creates a new DATABLOCK in OpenNebula

• delete volume: Deletes an existing DATABLOCK.

• describe volumes: Describe all available DATABLOCKs for this user

• attach volume: Attaches a DATABLOCK to an instance

• detach volume: Detaches a DATABLOCK from an instance

• create snapshot:

• delete snapshot:

• describe snpahost:

7.3.4 Elastic IPs

• allocate address: Allocates a new elastic IP address for the user

• release address: Releases a publicIP of the user

• describe addresses: Lists elastic IP addresses

• associate address: Associates a publicIP of the user with a given instance

7.3. OpenNebula EC2 User Guide 91

http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/index.html?using-query-api.html

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

• disassociate address: Disasociate a publicIP of the user currently associated with an instance

7.3.5 Keypairs

• create keypair: Creates the named keypair

• delete keypair: Deletes the named keypair, removes the associated keys

• describe keypairs: List and describe the key pairs available to the user

7.3.6 Tags

• create-tags

• describe-tags

• remove-tags

Commands description can be accessed from the Command Line Reference.

User Account Configuration

An account is needed in order to use the OpenNebula cloud. The cloud administrator will be responsible for assigning
these accounts, which have a one to one correspondence with OpenNebula accounts, so all the cloud administrator
has to do is check the configuration guide to setup accounts, and automatically the OpenNebula cloud account will be
created.

In order to use such an account, the end user can make use of clients programmed to access the services described in
the previous section. For this, she has to set up his environment, particularly the following aspects:

• Authentication: This can be achieved in three different ways, here listed in order of priority (i.e. values specified
in the argument line supersede environmental variables)

– Using the commands arguments. All the commands accept an Access Key (as the OpenNebula username)
and a Secret Key (as the OpenNebula hashed password)

– Using EC2_ACCESS_KEY and EC2_SECRET_KEY environment variables the same way as the argu-
ments

– If none of the above is available, the ONE_AUTH variable will be checked for authentication (with the
same used for OpenNebula CLI).

• Server location: The command need to know where the OpenNebula cloud service is running. That information
needs to be stored within the EC2_URL environment variable (in the form of a http URL, including the port if
it is not the standard 80).

Warning: The EC2_URL has to use the FQDN of the EC2-Query Server

Hello Cloud!

Lets take a walk through a typical usage scenario. In this brief scenario it will be shown how to upload an image to
the OpenNebula image repository, how to register it in the OpenNebula cloud and perform operations upon it.

• upload_image

92 Chapter 7. Public Cloud

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

Assuming we have a working Gentoo installation residing in an .img file, we can upload it into the OpenNebula cloud
using the econe-upload command:

$ econe-upload /images/gentoo.img
Success: ImageId ami-00000001
$ econe-register ami-00000001
Success: ImageId ami-00000001

• describe_images

We will need the ImageId to launch the image, so in case we forgotten we can list registered images using the econe-
describe-images command:

$ econe-describe-images -H
Owner ImageId Status Visibility Location
--
helen ami-00000001 available private 19ead5de585f43282acab4060bfb7a07

• run_instance

Once we recall the ImageId, we will need to use the econe-run-instances command to launch an Virtual Machine
instance of our image:

$ econe-run-instances -H ami-00000001
Owner ImageId InstanceId InstanceType
--
helen ami-00000001 i-15 m1.small

We will need the InstanceId to monitor and shutdown our instance, so we better write down that i-15.

• describe_instances

If we have too many instances launched and we don’t remember everyone of them, we can ask econe-describe-
instances to show us which instances we have submitted.

$ econe-describe-instances -H
Owner Id ImageId State IP Type
--
helen i-15 ami-00000001 pending 147.96.80.33 m1.small

We can see that the instances with Id i-15 has been launched, but it is still pending, i.e., it still needs to be deployed
into a physical host. If we try the same command again after a short while, we should be seeing it running as in the
following excerpt:

$ econe-describe-instances -H
Owner Id ImageId State IP Type
--
helen i-15 ami-00000001 running 147.96.80.33 m1.small

• terminate_instances

After we put the Virtual Machine to a good use, it is time to shut it down to make space for other Virtual Machines
(and, presumably, to stop being billed for it). For that we can use the econe-terminate-instances passing to it as an
argument the InstanceId that identifies our Virtual Machine:

$ econe-terminate-instances i-15
Success: Terminating i-15 in running state

Warning: You can obtain more information on how to use the above commands accessing their Usage help
passing them the -h flag

7.3. OpenNebula EC2 User Guide 93

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

7.4 EC2 Ecosystem

In order to interact with the EC2 Service that OpenNebula implements you can use the client included in the OpenNeb-
ula distribution, but also you can choose one of the well known tools that are supposed to interact with cloud servers
through the EC2 Query API, like the Firefox extension HybridFox, or the command line tools, Euca2ools.

7.4.1 HybridFox

HybridFox is a Mozilla Firefox extension for managing your Amazon EC2 account. Launch new instances, mount
Elastic Block Storage volumes, map Elastic IP addresses, and more.

Configuration

• You have to set up the credentials to interact with OpenNebula, by pressing the Credentials button:

1. Account Name, add a name for this account

2. AWS Access Key, add your OpenNebula username

3. AWS Secret Access Key, add your OpenNebula SHA1 hashed password

94 Chapter 7. Public Cloud

http://code.google.com/p/hybridfox/
http://open.eucalyptus.com/wiki/Euca2oolsGuide_v1.1/
http://code.google.com/p/hybridfox/

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

• Also you have to specify in a new Region the endpoint in which the EC2 Service is running, by pressing on
the Regions button. Take care of using exactly the same url and port that is specified in the econe.conf file,
otherwise you will get AuthFailure:

Warning: If you have problems adding a new region, try to add it manually in the ec2ui.endpoints variable inside
the Firefox about:config

Typical usage scenarios

• List images

7.4. EC2 Ecosystem 95

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

• Run instances

96 Chapter 7. Public Cloud

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

• Control instances

7.4. EC2 Ecosystem 97

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

You can also use HybridFox a similar Mozilla Firefox extension to interact with cloud services through the
EC2 Query API

7.4.2 Euca2ools

Euca2ools are command-line tools for interacting with Web services that export a REST/Query-based API compatible
with Amazon EC2 and S3 services.

You have to set the following environment variables in order to interact with the OpenNebula EC2 Query Server. The
EC2_URL will be the same endpoint as defined in the /etc/one/econe.conf file of Opennebula. The
EC2_ACCESS_KEY will be the OpenNebula username and the EC2_SECRET_KEY the OpenNebula sha1 hashed
user password

~$ env | grep EC2
EC2_SECRET_KEY=e17a13.0834936f71bb3242772d25150d40791e72
EC2_URL=http://localhost:4567
EC2_ACCESS_KEY=oneadmin

98 Chapter 7. Public Cloud

http://code.google.com/p/hybridfox/
http://open.eucalyptus.com/wiki/Euca2oolsGuide_v1.1/

OpenNebula 4.10 Advanced Administration Guide, Release 4.10.2

Typical usage scenarios

• List images

~$ euca-describe-images
IMAGE ami-00000001 srv/cloud/images/1 daniel available private i386 machine
IMAGE ami-00000002 srv/cloud/images/2 daniel available private i386 machine
IMAGE ami-00000003 srv/cloud/images/3 daniel available private i386 machine
IMAGE ami-00000004 srv/cloud/images/4 daniel available private i386 machine

• List instances

~$ euca-describe-instances
RESERVATION default daniel default
INSTANCE i-0 ami-00000002 192.168.0.1 192.168.0.1 running default 0 m1.small 2010-06-21T18:51:13+02:00 default eki-EA801065 eri-1FEE1144
INSTANCE i-3 ami-00000002 192.168.0.4 192.168.0.4 running default 0 m1.small 2010-06-21T18:53:30+02:00 default eki-EA801065 eri-1FEE1144

• Run instances

~$ euca-run-instances --instance-type m1.small ami-00000001
RESERVATION r-47a5402e daniel default
INSTANCE i-4 ami-00000001 192.168.0.2 192.168.0.2 pending default 2010-06-22T11:54:07+02:00 None None

7.4. EC2 Ecosystem 99

	Multi-VM Applications and Auto-scaling
	OneFlow
	OneFlow Server Configuration
	Managing Multi-tier Applications
	Application Auto-scaling

	Data Center Federation
	Data Center Federation
	OpenNebula Federation Configuration
	OpenNebula Federation Management

	Scalability
	Configuring Sunstone for Large Deployments
	Configuring OpenNebula for Large Deployments

	High Availability
	Virtual Machines High Availability
	OpenNebula High Availability

	Cloud Bursting
	Cloud Bursting
	Amazon EC2 Driver
	SoftLayer Driver
	Azure Driver

	Application Insight
	OneGate
	OneGate Server Configuration
	Application Monitoring

	Public Cloud
	Building a Public Cloud
	EC2 Server Configuration
	OpenNebula EC2 User Guide
	EC2 Ecosystem

